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Abstract 
The human face is used to regulate the conversation by 
gazing or nodding, to interpret what has been said by lip 
reading, and to communicate and understand somebody’s 
affective state and intentions on the basis of the shown 
facial expression. Machine understanding of human facial 
behavior could revolutionize human-machine interaction 
technologies and fields as diverse as security, behavioral 
science, medicine, communication, and education. Yet 
development of an automated system that detects and 
interprets human facial signals is rather difficult. This 
article summarizes our research efforts in meeting this 
challenge. It presents two systems for machine recognition 
of facial muscle actions (i.e., Action Units, AUs) in face 
video and a case-based reasoning system capable of 
classifying facial expressions (coded in terms of AUs) into 
the emotion categories learned from the user. 
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1 Introduction 
The human face provides a number of signals essential for 
interpersonal communication in our social life. The face 
houses the speech production apparatus and is used to 
identify other members of the species, to regulate the 
conversation by gazing or nodding, and to interpret what 
has been said by lip reading. It is our direct and naturally 
preeminent means of communicating and understanding 
somebody’s affective state and intentions on the basis of 
the shown facial expression [5].  
Automating the analysis of facial behavior would be 
highly beneficial for fields as diverse as security, medicine 
and education. In security contexts, facial expressions play 
a crucial role in establishing or detracting from credibility. 
In medicine, facial expressions are the direct means to 
identify when specific mental processes are occurring. In 
education, pupils’ facial expressions inform the teacher of 
the need to adjust the instructional message. As far as 
interfaces between humans and computers (PCs / robots / 
machines) are concerned, facial expressions provide a way 
to communicate information about needs and demands to 
the machine. Where the user is looking (gaze tracking) can 
be effectively used to free computer users from the classic 
keyboard and mouse. Also, certain facial signals (e.g. a 
wink) can be associated with certain commands (e.g. a 
mouse click) offering an alternative to traditional mouse 
and keyboard commands. The human ability to read 
emotions from someone’s facial expressions is the basis of 
facial affect processing that can lead to expanding 
interfaces with emotional communication and, in turn, to 
obtaining a more flexible, adaptable, and natural 
interaction between humans and machines. 
 
2 Facial action coding 
Most approaches to automatic facial expression analysis 
attempt to recognize a small set of prototypic emotional 

facial expressions, i.e., fear, sadness, disgust, happiness, 
anger, and surprise (for an exhaustive survey of the past 
work on this research topic, the reader is referred to [10]). 
This practice may follow from the work of Darwin and 
more recently Ekman [5], who suggested that basic 
emotions have corresponding prototypic expressions. In 
everyday life, however, such prototypic expressions occur 
relatively rarely; emotions are displayed more often by 
subtle changes in one or few discrete facial features, such 
as raising of the eyebrows in surprise. To detect such 
subtlety of human emotions and, in general, to make the 
information conveyed by facial expressions available for 
usage in various aforementioned applications, automatic 
recognition of facial muscle actions, such as the action 
units (AUs) of the FACS system [3], is needed. Facial 
Action Coding System (FACS) is designed for human 
observers to describe changes in facial expression in terms 
of observable facial muscle actions (AUs). FACS provides 
the rules for visual detection of 44 different AUs and their 
temporal segments (onset, apex, offset) in a face image 
sequence. Using these rules, a human coder decomposes a 
shown facial expression into the specific AUs that 
produced the expression. 
Few approaches have been reported for automatic AU 
recognition in face images (for an exhaustive survey of the 
past work on this research topic, the reader is referred to 
[6]). These include automatic detection of 16 AUs from 
face video using lip tracking, template matching and 
neural networks [14], color and motion based detection of 
20 AUs occurring alone or in combination in profile-view 
face video [8], and automatic detection of 18 AUs from 
face video using Gabor filters, AdaBoost and Support 
Vector Machines [1]. In contrast to these methods, which 
address mainly the problem of spatial modeling of facial 
expressions, the methods proposed in this article address 
the problem of temporal modeling of facial expressions as 
well. In other words, the methods proposed here are very 
suitable for encoding temporal activation patterns (onset 

 apex  offset) of AUs shown in an input face video.  
 
2.1 AU detection using temporal templates 
Figure 1 outlines our method for AU detection in face 
video using temporal templates. Temporal templates are 

kN
N

- &
 rule-based classification 

Neutral 

Figure 1. AU detection using tempor
Lowered brows
Pressed lips
Raw data
 Temporal Template 
representation 
Interpretation
Lowered brows
Pressed lips
al templates 



 
 
 

  

2D images constructed from image sequences, which 
show motion history, that is, where and when motion in 
the input image sequence has occurred [2]. We employ 
Motion History Images (MHI), which in contrast to 
Motion Energy Images preserve not only spatial but also 
the temporal information. More specifically, the value of a 
pixel in an MHI image indicates where and when motion 
in the input image sequence has occurred. This value 
decays over time, so that a high intensity pixel denotes 
recent motion, a low intensity pixel denotes a motion that 
occurred earlier in time, and intensity zero denotes no 
motion at all at that specific location.  
Before we can construct a MHI from an input video, the 
face present in the video needs to be registered in two 
ways. Intra registration removes all rigid head movements 
within the input video while the inter registration places 
the face at a predefined location in the scene. The inter 
registration process warps the face onto a predefined 
'normal' face, eliminating inter-person variation of face 
shape and facilitating the comparison between the facial 
expression shown in the input video and template facial 
expressions. Under the assumption that each input image 
sequence begins and ends with a neutral facial expression, 
we downsample the number of frames to a fixed number 
of (n+1) frames. In this way our system becomes robust to 
the problem of varying duration of facial expressions. 

After the registration and time warping of the input 
image sequence, the MHI is obtained as follows. Let I(x, y, 
t) be an image sequence of pixel intensities of k frames 
and let D(x, y, t) be the binary image that results from 
pixel intensity change detection, that is by thresholding 

( ) ( ) thtyxItyxI >−− 1,,,, , where x and y are the spatial 
coordinates of picture elements and th is the minimal 
intensity difference between two images. In an MHI, say 
Ht, the pixel intensity is a function of the temporal history 
of motion at that point with t being a frame of the 
downsampled input video (with (n+1) frames). Using the 
known parameter n, Ht is defined as: 
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where ( )ns /255=  is the intensity step between two 

history levels and where ( ) 0=tyxtH ,, for 0≤t . The 
final MHI, say H(x, y), is found by iteratively computing 
equation (1) for 11 += nt K . 
For automatic detection of AU from MHI-represented face 
image sequences, we employ a combined kNN/rule-based 
classifier. The utilized kNN algorithm is straightforward: 
for a test sample it uses a distance metric to compute 
which k (labeled) training samples are “nearest” to the 
sample in question and then casts a majority vote on the 
labels of the nearest neighbors to decide the class of the 
test sample. Parameters of interest are the distance metric 
being used and k, the number of neighbors to consider. 
The optimal parameters were experimentally determined 
to be the simple Euclidian distance measure and k = 3 
[15]. Although it gives a good indication about the AUs 
shown in an input video, the kNN algorithm can confuse 
AUs that have partially the same MHI-representation. To 
address this drawback, we created a set of rules. With 
these rules we can correctly reclassify samples that the 
kNN algorithm misclassifies at first. For instance, the kNN 
classifier often confuses AU4 and AU1+AU4. Both 
produce activity in the same part of the MHI, but AU4 
causes the eyebrows to move inward and downward, while 
AU1+AU4 first causes an upward movement followed by 

an inward and downward movement of the eyebrows. This 
results in high activation between the brows and relatively 
low activation above the inner corners of the brows in the 
case of AU4 activation. Hence, the rules used to resolve 
the confusion in question have been defined based upon 
this kind of knowledge about the facial muscle anatomy.  
When tested on the Cohn-Kanade Facial Expression 
Database [4] and the MMI Facial Expression Database [9], 
the proposed method achieved a recognition rate of 68%, 
respectively 61%, when detecting 21 AUs occurring alone 
or in combination in an input face image sequence (for 
details about this method see [15]). 
 
2.2 AU detection using temporal rules 
Figure 2 outlines our method for AU detection in face 
video using temporal rules. The method processes an input 
face image sequence in four steps: Face Detection, Facial 
Fiducial Points Detection, Point Tracking and AU Coding.  
To detect the face region in the first frame of an input face 
video, we adopt a real-time face detector proposed in [1], 
which represents an adapted version of the original Viola-
Jones face detector [16]. The Viola-Jones face detector 
consists of a cascade of classifiers trained by AdaBoost. 
Each classifier usess integral image filters, which remind 
of Haar Basis functions and can be computed very fast at 
any location and scale. For each stage in the cascade, a 
subset of features is chosen using a feature selection based 
on AdaBoost. The adapted version of the Viola-Jones face 
detector that we employ uses GentleBoost instead of 
AdaBoost and it uses a smart training procedure in which, 
after each single feature, the system can decide whether to 
test another feature or to make a decision. By this the 
system retains information about the continuous outputs of 
each feature detector rather than converting to binary 
decisions at each stage of the cascade. 
The detected face region is then divided in 20 relevant 
Regions of Interest (ROIs), each one corresponding to one 
facial point to be detected. A combination of heuristic 
techniques based upon the analysis of the vertical and 
horizontal image histograms achieves this. The employed 
facial feature point detection method [17] uses individual 
feature patch templates to detect points in the relevant 
ROI. These feature models are 13×13 pixels GentleBoost 
templates built from both gray level intensities and Gabor 
wavelet features. In the training phase, the feature models 
are learned using a representative set of positive and 
negative examples, where the positive examples are image 
patches centered on a particular facial feature point and 
the negative examples are image patches randomly 
displaced a small distance from the same facial feature. In 
the testing phase, each ROI is filtered first by the same set 
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of Gabor filters used in the training phase (in total, 48 
Gabor filters are used). Then, for a certain facial point an 
input 13×13 pixels window (sliding window) is slid pixel 
by pixel across 49 representations of the relevant ROI 
(grayscale plus 48 Gabor filter representations). For each 
position of the sliding window, a GentleBoost classifier 
outputs a response depicting the similarity between the 49-
dimensional representation of the sliding window and the 
learned feature point model. After scanning the entire 
ROI, the position with the highest response reveals the 
feature point in question. 
After 20 fiducial points are localized in the first frame of 
the input face image sequence, windows positioned 
around each of the facial points, define a number of color 
templates. Let us denote such a color template with o = 
{oi} where i is the pixel subscript. We subsequently track 
each color template for the rest of the image sequence 
with the auxiliary particle filter that was introduced by Pitt 
and Shepard [12]. Particle filtering has become a 
dominant tracking paradigm due to its ability to deal 
successfully with noise, occlusion and clutter. In order to 
adapt it for the problem of color-based template tracking, 
we define an observation model that is based on a robust 
color-based distance between the color template o = {oi | i 
= 1…M} and a color template c = {ci | i = 1…M} at the 
current frame. We attempt to deal with shadows by 
compensating for the global intensity changes. We use the 
distance function d, see equation (2) below, where M is 
the number of pixels in each template, mc  (and mo) is the 
average intensity of template c = {ci} (and, respectively, 
of template o = {oi}), i is the pixel index and the robust 
function that we use is the absolute value. 

Based upon the changes in the position of the fiducial 
points, we measure changes in facial expression. Changes 
in the position of the fiducial points are transformed first 
into a set of mid-level parameters for AU recognition. We 
defined two parameters: up/down(P) and inc/dec(PP’). 
Parameter up/down(P) = y(Pt1) – y(Pt) describes upward 
and downward movements of point P and parameter 
inc/dec(PP’) = PP’t1 – PP’t describes the increase or 
decrease of the distance between points P and P’. Based 
upon the temporal consistency of mid-level parameters, a 
rule-based method encodes temporal segments (onset, 
apex, offset) of 27 AUs occurring alone or in combination 
in the input face videos. For instance, to recognize the 
temporal segments of AU4, which pulls the eyebrows 
closer together, we exploit the following temporal rules: 

IF ([inc/dec(DD1)]t > [inc/dec(DD1)]t-1 + ε)  
AND inc/dec(DD1) > ε THEN AU4-onset 

IF | [inc/dec(DD1)]t – [inc/dec(DD1)]t-1 | ≤ ε  
AND inc/dec(DD1) > ε THEN AU4-apex 

IF ([inc/dec(DD1)]t < [inc/dec(DD1)]t-1 – ε)  
AND inc/dec(DD1) > ε THEN AU4-offset 

When tested on the Cohn-Kanade Facial Expression 
Database [4] and the MMI Facial Expression Database [9], 
the proposed method achieved a recognition rate of 90% 
when detecting 27 AUs occurring alone or in combination 
in an input face image sequence (for details about this 
method see [7]). 
 
3 User-profiled facial-afect recognition 
As already noted above, virtually all systems for automatic 
facial affect analysis attempt to recognize a small set of 
universal/basic emotions [10]. However, pure expressions 
of “basic” emotions are seldom elicited; most of the time 
people show blends of emotional displays [5]. Hence, the 

classification of human non-verbal affective feedback into 
a single “basic”-emotion category is not realistic. Also, not 
all non-verbal affective cues can be classified as a 
combination of the “basic” emotion categories. Think for 
instance about the frustration, skepticism or boredom. 
Furthermore, it has been shown that the comprehension of 
a given emotion label and the ways of expressing the 
related affective state may differ from culture to culture 
and even from person to person [13]. Hence, pragmatic 
choices (user-profiled choices) must be made regarding 
the selection of affective states to be recognized by an 
automatic analyzer of human affective feedback.  
The rest of this paper describes our case-based reasoning 
system that performs classification of AUs into the 
emotion categories learned from the user. The utilized 
case base is a dynamic, incrementally self-organizing 
event-content-addressable memory that allows fact 
retrieval and evaluation of encountered events based upon 
the user preferences and the generalizations formed from 
prior input. Each event (case) is one or more micro-events, 
each of which is a set of AUs. Micro-events related by the 
goal of communicating one specific affective state are 
grouped within the same dynamic memory chunk. In other 
words, each memory chunk represents a specific emotion 
category and contains all micro-events to which the user 
assigned the emotion label in question. The indexes 
associated with each dynamic memory chunk comprise 
individual AUs and AU combinations that are most 
characteristic for the emotion category in question. 
Finally, the micro-events of each dynamic memory chunk 
are hierarchically ordered according to their typicality: the 
larger the number of times a given micro-event occurred, 
the higher its hierarchical position within the given chunk. 
The initial endowment of the dynamic memory is achieved 
by asking the user to associate an interpretation (emotion) 
label to a set of 40 typical facial expressions (micro-events 
that might be hardwired to emotions according to [13]).  
The classification of the AUs detected in an input face 
image into the emotion categories learned from the user is 
further accomplished by case-based reasoning about the 
content of the dynamic memory. To solve a new problem 
of classifying a set of input AUs into the user-defined 
interpretation categories, the following steps are taken:  
1. Search the dynamic memory for similar cases, 

retrieve them, and interpret the input set of AUs using 
the interpretations suggested by the retrieved cases.  

2. If the user is satisfied with the given interpretation, 
store the case in the dynamic memory. Otherwise, 
adapt the memory according to user-provided 
feedback on the interpretation he associates with the 
input facial expression. 

The utilized retrieval and adaptation algorithms employ a 
pre-selection of cases that is based upon the clustered 
organization of the dynamic memory, the indexing 
structure of the memory, and the hierarchical organization 
of cases within the clusters/ chunks according to their 
typicality (for details about this method see [11]).  
Two validation studies on a prototype system have been 
carried out. The question addressed by the 1st validation 
study was: How acceptable are the interpretations given by 
the system after it is trained to recognize 6 basic 
emotions? The question addressed by the 2nd validation 
study was: How acceptable are the interpretations given by 
the system, after it is trained to recognize an arbitrary 
number of user-defined interpretation categories? In the 
first case, a human FACS coder was asked to train the 
system. In the second case, a lay expert, without formal 
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training in emotion signals recognition, was asked to train 
the system. The same expert used to train the system was 
used to evaluate its performance, that is, to judge the 
acceptability of interpretations returned by the system. For 
basic emotions, in 100% of  test cases the expert approved 
of the interpretations generated by the system. For user-
defined interpretation categories, in 83% of test cases the 
lay expert approved entirely of the interpretations and in 
14% of test cases the expert approved of most but not of 
all the interpretation labels generated by the system for the 
pertinent cases. 
 
4 Conclusion 
In this paper, we presented two methods for AU detection 
in a nearly frontal view face video and a facial expression 
recognition system that performs classification of AUs 
into the emotion categories learned from the user. 
The presented approaches extend the state of the art in 
automatic AU detection from face image sequences in two 
ways including temporal modeling of facial expressions 
and the number of AUs (21 and 27 AUs in total) handled. 
Namely, the automated systems for AU detection from 
face video that have been reported so far address mainly 
the problem of spatial modeling of facial expressions and, 
at best, can detect 16 to 18 AUs (from in total 44 AUs). 
Our methods also improve other aspects of automated AU 
detection compared to earlier works. The performance of 
both proposed methods is invariant to occlusions like 
glasses and facial hair as long as these do not entirely 
occlude facial points that are tracked (this is of importance 
for the second proposed AU detector). Also, the methods 
perform well independently of changes in the illumination 
intensity. As far as our method for automatic facial affect 
interpretation is concerned and given that the previously 
reported facial expression analyzers are able to classify 
facial displays only in one of the 6 basic emotion 
categories, the proposed method extends the state of the 
art in the field by enabling facial expression interpretation 
in a user-adaptive manner. 
However, the proposed methods cannot recognize the full 
range of facial behavior (i.e. all 44 AUs defined in FACS). 
Furthermore, they assume that the input data are facial 
displays which are isolated or pre-segmented, showing a 
single temporal pattern (onset  apex  offset) of an 
expression that begins and ends with a neutral state. In 
reality, such segmentation is not available; human facial 
behavior is more complex and transitions from a facial 
(emotional) expression to another do not have to involve 
intermediate neutral state. Hence, our facial behavior 
analyzers cannot deal with spontaneously occurring facial 
displays. Further research efforts are necessary if the full 
range of human (spontaneous and posed) facial behavior is 
to be coded in an automatic way. 
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