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Abstract e
Finding fiducial facial points in any frame of a video e F| %=
showing rich naturalistic facial behaviour is an unsolved (R
problem. Yet this is a crucial step for geometric-feature- e
based facial expression analysis, and methods that use <>’
appearance-based features extracted at fiducial faciatfpoi A N

locations. In this paper we present a method based on 3

a combination of Support Vector Regression and Markov Figure 1. Point model of 22 fiducial points. The right imagewss
Random Fields to drastically reduce the time needed to the relationship between a patch drawn at locafiaand the target
search for a point’s location and increase the accuracy and location?'.

robustness of the algorithm. Using Markov Random Fields

allows us to constrain the search space by exploiting the

constellations that facial points can form. The regressors [16]. We will denote those detectors as facial component
on the other hand learn a mapping between the appear-qgetectors. However, the cues for tasks like facial expres-
ance of the area surrounding a point and the positions of sjon recognition or gaze detection lie in the more detailed
these points, which makes detection of the points very fasiositions of points within these facial components. For ex-
and can make the algorithm robust to variations of appear- ample, a smile can be detected by analysing the positions of
ance due to facial expression and moderate changes in heaghe mouth corners, not by the position of the mouth itself.
pose. .The proposed point detect_ion algorithm was tested on |, this paper we present a novel point detector which we
1855 images, the results of which showed we outperformgp )y to detect 22 fiducial facial points in order to obtain an
current state of the art point detectors. experimental performance comparison of the method. The

points we aim to detect are shown in figureThey include

20 fiducial locations which provide useful information for
1. Introduction automatic expression recognition, such as the upper eyelid

the eye corners, the mouth corners and the nostrils. We will

Facial point detection is an important step in tasks suchdenote such locations as facial points. Besides the facial
as face recognition, gaze detection, and facial expressiorpoints we also detect the pupils, so that in addition to facia
analysis. The performance of these tasks is usually to aexpression analysis the gaze direction can be estimated.
large degree dependent on the accuracy of the facial point  Previous methods for facial feature point detection can
detector, yet the perfect facial point detector is yet to be be classified into two categories: texture-based and shape-
developed. In this paper, we propose a novel method thathased methods. Texture-based methods model the local tex-
brings us a step closer to this goal. ture around a given feature point, for example the pixel val-
Many existing works consider the objects to detect to be ues in a small region around a mouth corner. Shape-based

entire facial features, such as an eye, the nose, or the moutmethods regard all facial feature points as a shape, which



is learned from a set of labelled faces, and try to find the work they proposed a branch-and-bound scheme that finds
proper shape for any unknown face. a global optimal solution over all possible sub-images.

Typical shape-based methods include detectors based on Recently, there have been a number of approaches that
active shape or active appearance modéfs J]. These  use local image information and regression based tech-
methods detect shapes of facial features instead of separatniques to locate facial points. Classifiers can only predict
facial points. A number of approaches that combine tex- whether the tested location is the target location or not. Re
ture and shape-based methods have been proposed as wegiressors on the other hand can provide much more detailed
for example E], which use PCA on the grey level images information.
combined with Active Shape Models (ASM), and] that By using regression we can eliminate the need for an ex-
extends the ASM with Constrained Local Model. Chetn  haustive sliding window based search, as every patch close
al. proposed a method that applies a boosting algorithm toenough to the target point can provide an estimate of the
determine facial feature point candidates for each pixel in target’s location relative to that patch. Zhang etZal][
an inputimage and then uses a shape model as a filter to sesse regression to address deformable shape segmentation.
lect the most probable position of five feature poin§s Of  They applied an image-based regression algorithm that uses
the works described above;, [14] have been evaluated on  boosting methods to find a number of contours in the face.
the same publicly available database: the BiolD databaseBased on these contours, they could also compute the lo-
[11]. This allows us to compare our work with the shape cations of 20 facial points. Cristinacce and Cootép [
based approaches mentioned above. use GentleBoost regression within the Active Shape Model

Typical texture-based methods include a grey-value, eye-(ASM) search framework to detect 20 facial points. Seise
configuration and Artificial Neural-Network-based method et al. [20] use the ASM framework together with a Rel-
that detects 8 facial points around the eye$,[a log-Gabor ~ evance Vector Machine regressor to track the contours of
filter based facial point detectiof][method to detect 7 fa-  lips. However, their approach was tested on only a single
cial points, and a two-stage method for detecting 8 facial image sequence. Also, Relevance Vector Machines are no-
points that uses a hierarchy of Gabor filter networks [  toriously slow and hard to train.

Vukadinovic and Pantic/[d] presented a work that aims to In summary, although some of these detectors have been
detect 20 facial points. It uses Gabor filters to extract fea- reported to perform quite well when localising a small num-
tures from heuristically determined regions of interest. A ber of facial feature points such as the corners of the eyes
GentleBoost classifier is learned on these features. Duringand the mouth, there are three major issues with all existing
testing, a sliding window is applied to every location irsthi  previous work. First of all, none buff] is able to detect
region, and the point with the highest response to the clas-all 20 facial feature points necessary for automatic expres
sifier is selected as the detected point. An implementationsion recognition (see Fid,). To wit, none are able to detect

of [25] is publicly available from Dr. Pantic’s website. This the upper and lower eyelids. This is despite the fact that the
allows us to compare it with the method proposed in this upper and lower eyelid are instrumental in detecting four
work. frequently occurring facial expressions: eye blinks, vgink

Many of the methods described above apply a sliding- widening of the eye aperture (e.g. in an expression of sur-
windows-based search in a region of interest (ROI) of the Prise) and narrowing of the eye aperture (e.g. in sleepy or
face. A classic example of this i€f]. In this approach, angry expressions). Also, no previous work has reported to
a binary classifier or some other function of goodness thatbe able to robustly handle large occlusions such as glasses,
determines how well a location represents the target facialbeards, and hair that covers part of the eyebrows and eyes.
point is applied to every location in the ROI. However, this Lastly, non have reported to detect facial points robustly i
is a slow process, as the search time increases linearly wittthe presence of facial expressions. We will show that the
the search area. Depending on the type of classifier usedapproach proposed in this paper overcomes all three short-
this approach may also lead to either multiple points clas- COmings, while retaining high accuracy and low computa-
sified as the target point, or to an incorrect maximum. Pro- tional complexity.
posals to use gradient descent techniques to speed up this We propose a novel method based on Boosted Regres-
process have reportedly faileild], as the learned functions  sion coupled with Markov Networks, which we coin BoR-
tend to have local extremes, which can result in incorrect MaN. BoRMaN iteratively uses Support Vector Regression
detections. Recently, a method was proposed to tune theand local appearance based features to provide an initial
classifiers in such a way that the output is a smoother func-prediction of 22 points, and then applies the Markov Net-
tion, without local extremeslf]. However, the authors work to ensure we sample new locations to apply the re-
reported that their method was not entirely successful in gressor to from correct point constellations. Our method
eliminating all local extremes. Another method to speed thus exploits the property that objects which have a regular
up the search was proposed by Lampert et’dl]. [In their structural composition are made up of a combination of dis-



Figure 2. Some typical results on the FERET and BiolD datehas

tinct parts whose relative positions can be described mathe section2 we explain the BoRMaN method we use to de-

matically. The face, with the eyes, mouth, eyebrows etc. astect facial points. In sectio® we present an evaluation

parts, is a good example of this type of object. study performed on three different databases, 1500 images
Our approach is cast in a probabilistic framework. To of frontal faces in total. Finally, in sectiohwe present our

determine the location of a point, we use three independentlosing remarks.

sources of information: the first is @npriori probability of

a point’s location based on the location of the detected face 2, BoRM aN point detection

Secondly we use the regression predictors, and thirdly we o o

use Markov Random Fields (MRFs) to model the points’ 2-1. A priori probability

relative positions.  Our method has lower computational 1o make sure we start testing our regressors close to the
complexity than existing point detectors, and is robust 10 t5yget |ocation, we need some prior information about the
facial expressions and a certain degree of head pose variagcations of the points. This is particularly important be-
t|on_s. The BoRMaN point detector will be me}de publicly ~5use we cannot test the regressor on just any image po-
available for download from the authors’ websites. sition, and still expect a reasonable result. The better the
The main contribution of the work presented here is the prior is, the more likely it is to obtain a good regressor es-
combination of SVRs for local search with MRFs for global timate. In our approach we base @upriori probability on
shape constraints. We believe that this is a novel approachhe hounding box returned by a face detector (the face box).
to face point localisation. In addition, to the best of our Because of its proven success, we apply a modified Vi-
knowl_edgg, this_is the first time that feature ;election by ola & Jones face detection methdd {o grey-scale versions
Boosting is applied to Support Vector Regression. Regard—of the input images. Some postprocessing is afterwards ap-
ing the MRFs, we note three methodological novelties: pjied to the detected face: it is enlarged by 40 % at the bot-
Firstly, a node is defined to be a spatial relation betweentom so that every chin of our training set was included, it
two facial points rather than being a facial pointitselfisSTh s resized to a 200 x 280 pixels face box, and a global il-
allows arepresentation thatis invariantto in-plane iotes,  |umination normalisation is applied so the worst effects of

scale changes and translations (see below). It also preduceyarying illumination conditions are removed. We will de-
amore compact set of training examples, since now only thenpte the normalised grey-scale imagefas

anthropomorphic differences between subjects are encoded Wwe divide our points into two groups: stable fiducial

Secondly our method proposes a novel way of defin- points and unstable fiducial points. The difference between
ing the relations between nodes. For example, modellingthese points is that stable points do not change their posi-
the vector of two angles is difficult, since both values can tion due to facial expression or speech. In our case the set
be affected by in-plane rotations. By modelling the dif- of stable points isS, = {pa,pa1, P8, PB1,PH, PH1, PN}
ference between two angles, and the ratio of two vector (see fig.1). These points are detected first, as they are aux-
lengths, we achieve the desired invariance to in-plane ro-jliary for the detection of the unstable points.
tations, isotropic scaling and translations. After the face box has been found, we can model the

Thirdly, using Gaussian Mixture Models (GMMs) to prior probability of the x- and y-position of each facial pbi
model the relations produces a bias in the final estimate to-relative to the coordinate system of the detected face. Us-
wards the mean values. Yet, most of the state of the arting the correct target locatiors for all points in each im-
methods use GMMs for setting spatial relations. Instead, age (obtained from manual annotation), we can map their
we define a new metric which only penalises improbable positions to this new coordinate system based on the face
configurations. box. This results in a set of points;;, for which we

The remainder of this paper is structured as follows: In calculate the mean and standard deviation of their x- and



y-coordinates. We thus have a bivariate Gaussian prior
probability P of the location of a facial poini, where
i € {pa,pa1,PB,PB1,PH,PH1,PN }, relative to the coor-
dinate system of a detected face box. This model automati-
cally takes into account the error made by the face detector. |
After detection of the stable points it is possible to use
them to perform a face registration by applying a non-
reflective similarity image transformation on the imalge
resulting in an image that is registered to remove in-plane ] ]
head rotation and, to a large effect, individual face shapeFigure 3. The output of the SVRs to detect an pupil: the eséitha
differences. We denote the resulting registered facéby d|rect|or_1 ohfthe talrge1t_rglef(;_panel) andhthe eshm_ateﬁ d@"’.tc: the
The a priori probabilities of the locations of the unstable target (right panel). The distance to the target is showrdelp
points are modelled in the same way as the stable point lo-
cations, but relative to the registered face coordinategays
We thus also have a bivariate Gaussian prior probatiility ~ prediction is derived from a combination of the estimates

of the location of each unstable facial pojhtwhere; e made (see sectioh4). On the other hand, some estimates
{PeyeRr, PeyeL,PDs PD1, PE; PEL, PF, PF1, PGy PG, PI have greater errors which are not merely imprecisions. To
PJs DK PL, PM ) - prevent these errors from influencing the iterative process
we apply spatial restrictions on the location of each facial
2.2. Regression Prediction point depending on the other facial points. This process

prevents unfeasible facial point configurations. It is izl

by modelling a Markov Random Field (MRF), as outlined
in section2.3. An outline of the whole algorithm is given in
section2.4.

We formulate our localisation problem as finding the
vectorv that relates a patch locatiah, selected accord-
ing to some probability distribution function, to the targe
pointT (see Fig.1). We decompose this problem into two
separate regression problems. Regresspis tasked with

finding the anglex of v and the regressak,, is to predict 2.3. Spatial Relations

the lengthp of the vector, i.e. the distance éfto 7. We The introduction of spatial relations between facial point
will denote the estimate af provided by the regressofs, positions refers to the consideration of anthropomorghica
andR, by vz. This gives us the predicted target location restrictions when performing facial point detection. The
T=L+uy. objective for introducing spatial restrictions is the irope-

As regressor we have chosen Support Vector Regressorgnent of the target position estimates by preventing unfea-
(SVRs). The reason for this is the capability of dealing sible facial point combinations. The importance of such
with nonlinear problems, and a reportedly high generalisa-information is grounded in the richness of the problem of
tion capability. An early pilot study ruled out using multi  facial point detection: the face contains both stable ard un
ridge regression for this problem. The SVRs use a Gaussiarstable fiducial points, where the latter have greatly vayyin
RBF kernel. We thus need to optimise for the regression positions relative to the former. Also, some points are more
sensitivity e, the kernel parameter and the slack variable  distinctive than others, e.g. the inference of the position
C. Parameter optimisation is performed in a separate crossof the eye corner given local image intensities is more re-
validation loop during training, i.e. independently fronet  liable than the same task for the case of the chin position.
test data. It is therefore natural to consider the influence between fa-

Fig. 3 shows the output aR,, andR, for detection ofa  cial points and derive intelligent relations, where the mos
pupil. The regressor in this example is applied on patchesreliable and stable points aid the detection of the more com-
located at every second pixel in every second row in an aregplicated ones.
three times the standard deviation of the prior location of  When it comes to modelling the spatial relations, some
the pupil. As we can see, the regressors give a good yet notvorks opt to directly model the positions of each facial poin
a perfect indication of where the target point is. Note that with respect to the positions of other points (e.d21]],
although the location of the pupil is a global minimum, the using for example a coordinate system based on the head
predicted distance at that location is not zero. position. Instead, we propose a method were the relations

The error of the estimates provided by the regressor canbetween relative positions ghirs of points are modelled.
be grouped into two types. Most of the estimates contain More precisely, each relative position of a pair of points
errors that result from imprecisions in the regressor autpu {3, j} is a vectorr; ; pointing from one facial point to an-
Such errors can be removed by using an iterative procedurepther. The relation between two of these vectors is de-
where the point is detected in several iterations. The final scribed by two parameters: the relation between their angle



R, and the relation between their lengtRs. Thus, if we
noter; ; = (v j, pi,j), the objective is to model the possi-
ble relations between variables ; andc;,;, and between
variablesp; ; andp, ;. Furthermore, the obtained model
should be able to deal with in-plane face rotations and im-
precisions of the face detector, which affects the scale of
the face box. Thus we modét, = «;; — oy, and

R, = pi.j/pr.1, Which obtains such an independence.

Another important difference with respect to other meth-
ods is that we model these variables with a Sigmoid func-
tion. If a variable takes its values jm—, m™*], thenS(z) =
Pyigm(min(v—m~, —v+m™)). With this model the prob-
ability drops very fast when the value is out of the segment
of possible values. Note that the value in the extremes is
S(m~) = S(m*) = 0.5, which is the Sigmoid point of
inflexion. An advantage of using a Sigmoid instead of a

Figure 4. Vectors); andv; are nodesy , p;, andry, »,. The
MRF models the relation between these two nodes: the diftere
between the angles of the two vectaksand the ratio between the

Gaussian for modelling the possible values is that a Gaus-/engths of the two vectors

sian penalises all the values but its mean, biasing thetsesul
In contrast, modelling with a Sigmoid only penalise highly
improbable constellations.

For example, in practice this model of spatial relations
encodes that the line connecting poipts and pp is ap-
proximately orthogonal to the line connecting pointsand
pa, or that the distance between poipts andpg and the
distance between pointsy; andpg, have a certain proba-
ble pre-specified length relation (See HEig. So although
the positions of pointer andpg are flexible, the vector

connecting them is constrained to be roughly perpendicular

to the vector connecting4 andpg. As long as there are no
out-of-plane head rotations, the lengths of veciors- pg
andps — pp are the same. We have thus obtained invari-
ant relations from variable point positions. It is also impo
tant to note that the effectiveness and accuracy of directly
modelling the point positiong??’ and P, depends on the
accuracy of the face detector, while modelling the relative
positions is independent of the face detection.

Once the pairwise relations are defined, we model the
joint probability of a configuration using a Markov Ran-
dom Field. In our model, the nodes correspond to each
of the relative positions; ; and their states are binary,
coding whether the estimates are erroneous or correct
In each relation, the relative positions of poirtand 7,
ri; = (a54,pi;), and the relative positions of points
andl ri; = (o, pr) are modelled as,ng (v ;, g1) -
Saist(pi,j, pr,1). An example of what a node is and how the
relation between two nodes is modelled is shown in 4ig.
Considering all possible relations (a fully connected reet)

"synthetic” facial point is created for the right eye, leftee
and nose, using the mean of the stable points belonging to
each of this facial component. Those points are then con-
sidered as fixed. The net generated for the left eyebrow is
created using the 3 synthetic points and the two unstable
points of the eyebrows. Equivalently, this process is per-
formed to detect the unstable points for the right eyebrow,
both eyes, the mouth and the chin.

Different algorithms can be used for minimising the
Markov Network. We use a Belief Propagation algorithm,
obtaining a probability of each point being a correct esti-
mate.

2.4. Point detection algorithm

The BoRMaN algorithm iteratively improves its detec-
tion results. It is outlined in algorithr@.1. The algorithm
starts of with the locations of maximum prior probability as
the predicted targets, as this is our best guess of the point
locations, given the face detection results. We use the lo-
cations of maximum prior probability as the first locations
to generate the Haar-like features from (see seckiéi
which are then used by the regressors to make the first pre-
diction about the target locations.

We start with an empty set of predicted target locations.
After each round, the predicted target locations provided
by the regressors are added to a set of predictions for each
point. We update the target locations as the median of this

unfeasible for the general case due to the exponential numset of predictions. This updated target is then analysed by
ber of relations. Some works, as][ propose automatic the Markov Network, which generates the patch locations
ways of selecting the most informative relations and reduceto test the regressors on in the next round. To avoid repeti-
the number of edges. In our case, we construct the MRFtive results, we add a small amount of zero-mean Gaussian
relations following a hierarchy: first the stable points are noise to the patch locations suggested by the Markov Nets.
detected using a fully connected network. Afterwards, a We repeat this for a fixed number of rounds and return



the last updated target as the final prediction of the target
locations. Keeping,. fixed allows us to guarantee a result
within a fixed period of time.

Algorithm 2.1: BORMAN(priors)

targets < priors

patches < priors

predictions < ()

for rnd « 1tomax_rnds

reg = regressor(patches)

predictions «— predictions U max(priors * reg)
targets < median(predictions)

patches < MarkovNet(targets) + N(0, o) Figure 5. Comparison of the cumulative error distributiépaint
to point error measured on the BiolD test set.

do

2.5. Local appear ancebased featuresand AdaBoost
feature selection

selection techniques, as reportedin][ As an added bene-

as the descriptors of local appearance. The reason fosthis i fit f émploying feature selection, we will have to compute
a twofold: on the one hand, we want to show that the suc- fewer features at each patch location, thus speeding up our

cess of our approach is due to the idea of turning the poima!gorithm. This is in contrast with fea_ture reduction. tech-
detection problem from a classification procedure into a re- Nidues such as PCA, which are not strictly featsetection

gression procedure, and not due to some highly descriptiveteCh”iques and still require all features to be computed firs

appearance feature. We implemented Drucker’s approach to AdaBoost re-

On the other hand, one of our main aims of the proposeddression ], using multi-ridge regression as the weak re-
approach is to greatly improve the time required to detéct al 9ressors. To find the optimal number of features to select,
points. By computing the integral image of our input face @ Stop condition is usually defined based on the strong re-
image first, computation of each Haar-like filter is reduced 9ressor output. For example, selection of features coudd te
to as little as four addition/subtraction operations. minate if the strong regressor output stops increasing for a

The optimal patch size has empirically been determined Predefined number of rounds. However, preliminary tests
to be 32 pixels high and wide during a pilot study. For every have shown that this does not produce the optimal number
location in the face imagé from where we want to get a of selected features. Therefore, we do not use this stop cri-
prediction of the direction and distance to the target point terium and instead let the AdaBoost process order all fea-
we compute the responses to 9 different Haar-like filters, attures based on their relative importance. We then optimise
four different scales: the full 32 pixels, 16, 8, and 4 pixels the number of features to use in a separate cross-validation
big. All filters are square, and for the 16, 8 and 4 pixels Process using SVRs.
filters, the centres of the filters were placed to overlap half
of the width of the adjacent filters of the same scale. This 3, Experiments
results in 2556 dimensional feature vectors.

Although SVR regressors are able to learn a function We have evaluated our method in two ways: a cross-
even with very little training data, regression performanc Vvalidation test on 400 images taken from the FERET and
decreases when the dimensionality of the training set is tooMMI-Facial Expression databases3 17], and a database
large. To be more precise, if we have a trainingBewith independent test on the BiolD database]{ The first
ny features ana, instances, then ifi; > n, it is possible test determines how well the database copes with varying
to uniquely describe every example in the training set by a expressions and occlusions. The second test performs a
specific set of feature values. Our training set consists ofbenchmark comparison of our proposed method with the
some 400 examples (images). Considering the fact that theexisting state of the art. Typical results are shown inZig
dimensionality of our feature set is 2556, we are indeed in  The images selected from the FERET and MMI-Facial
danger of over-fitting to the training set. One way to over- Expression databases contain varying facial expressions,
come this problem is to reduce the number of features usednany occlusions of the mouth area by beards and mous-
to train the SVR using feature selection algorithms. taches, of the eyebrow area by hair, and of the eye areas

Boosting algorithms such as GentleBoost or AdaBoost by glasses. There often were significant reflections on the
are not only fast classifiers, they are also excellent featur glasses, which made the detection of the eyes a particu-

For this work, we have chosen to adopt Haar-like filters



Table 1. BoRMaN point detection results for the cross-wadi@h test on 400 images. The classification rEtis defined as the number of
timese < 0.1, and the mean and standard deviation of the erprd,, ) are measured in percentagesiob p.

Point C e, e, Point Cl.Rate e, e,
PA 92.25%| 4.44% | 4.46% DPG1 96% 3.40% | 4.14%
pAl 90.5% | 5.25% | 5.86% PH 93.5% | 3.71% | 3.46%
DB 84.5% | 5.43% | 5.67% PH1 93.25% | 4.00% | 3.48%
pp1 | 92.25% | 4.27% | 4.24% pr 93.5% | 4.40% | 4.06%
PD 90.25% | 5.20% | 4.73 D 92.5% | 4.87% | 5.65%
pp1 | 91.25%| 4.97% | 5.02% PK 95% 3.94% | 4.08%
PE 89% | 5.40% | 4.77% I 89.5% | 5.23% | 5.26%
PE1 81% | 7.10% | 7.81% DM 19.25% | 20.5% | 12.0%
PE 94.5% | 3.34% | 3.96% PN 96.25% | 3.63% | 3.15%
pr1 | 94.25%| 3.62% | 5.15% || right pupil | 94.75% | 3.16% | 4.06%
PG 95% | 3.41% | 3.90% || left pupil 94.75% | 3.21% | 4.81%

larly challenging problem. On this set we applied a 10-fold database, as neither the CLM or the Stacked Model imple-
cross-validation evaluation. The results of this study are mentations are publicly available, yet they both tested the
shown in tablel. The table shows the mean error per point methods on the BiolD dataset. Thdsea publicly avail-
in percentages af;op (column 2), the standard deviation able implementation of the Gabor-ffjpd. Thus, if we ap-
of the error per point in percentagesdfpp (column 3), ply both the BoRMaN method and the Gabor-ffpd method
and the classification rate per point (column 1). The detec-on the BiolD dataset, we can compare the performance of
tion error of a point; is defined as the Euclidian point to the various methods on a common dataset. The BoRMaN
point distance betwe€n; and7;: method was trained using the FERET and MMI-database
. training data of the first fold of the previously outlined
T - T3 (1)  Cross-validation study.
drop The results of this are shown in Fig The figure shows
whered;op is defined as the Inter-Ocular Distance, i.e. the cumulative error distribution of the.;7 error measure.
the distance between the pupils. The classification@ate = The measuren.,7 is defined in §] as the mean error over

€

is defined as: . all internal points, that is, all points that lie on faciahfe
Z?:l el <0.1 tures instead of the edge of the face. For our method, that
Ci= n (2) would mean all points except fpr,. However, neither the

wherej is an image number and the total number of ~ CLM nor the Stacked Model approaches are able to detect

images in the dataset. As we can see, all points but pgint ~ the eyelids. So, to allow a fair comparison, we have ex-
are detected with extremely high accuracy, even though thecluded the point$pr, pr1, pc, p1} as well when calculat-
database includes many occlusions and expression. Poinfd me17. Fig5 shows clearly how we outperform all three
pa has a low detection results for two reasons: Firstly, the other approaches. The difference between the error levels
point's appearance is not well defined. The chin is locally for which 50% of the images are correctly detected is twice
smooth, and we can only identify it easily if a subject has a @s big when comparing BoRMaN with Stacked models than
sharp jawline. Even then, we're dependent on good lighting When comparing Stacked Models with CLMs. The figure
to make the jawline visible. Secondly, human annotators &lso shows that a significant proportion BoRMaN predic-
find it very difficult to consistently annotate the locatioh o tions have an extremely low error: 26% of the images have
the chin. This causes a big variance in the appearance of thé&n average point error of less than 2%i@$ p, which trans-

chin in the training data, which, in turn, causes detection o lates to roughly 2 pixels per point. Because the BoRMaN
the chin to be more difficult. method was trained using only images from completely dif-

The goal of our second test was to compare our facial ferent databases, we have also shown that our system gen-

point detector with those of others. Namely, we want to €ralises to unseen images from other databases.

compare our point with the current state of the art: two

Active Shape Model methods3( 14], yvhich we denote 4. Conclusions and future work

as CLM and Stacked Model, respectively), and a Gabor-

feature/GentleBoost based method that employs sliding We have proposed a novel method for finding 20 fidu-
window based searci§] (which we will call Gabor-ffpd). cial points and the pupils in an input image of a frontal
To make such a comparison, we are forced to use the BiolDface, based on boosted Support Vector Regression, Markov



Random Fields and dense local appearance based features.
The proposed method, which we coined BoRMaN, is robust
to varying lighting conditions, facial expression, modera
variations in head pose, and occlusions of the face caused
by glasses or facial hair. Our method is also more accu-
rate than the current state of the art in facial point dedecti
[3, 14, 23]. Itis approximately twice as fast ag]].
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