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ABSTRACT
We present the first Audio-Visual+ Emotion recognition
Challenge and workshop (AV+EC 2015) aimed at compari-
son of multimedia processing and machine learning methods
for automatic audio, visual and physiological emotion anal-
ysis. This is the 5th event in the AVEC series, but the
very first Challenge that bridges across audio, video and
physiological data. The goal of the Challenge is to provide
a common benchmark test set for multimodal information
processing and to bring together the audio, video and phys-
iological emotion recognition communities, to compare the
relative merits of the three approaches to emotion recogni-
tion under well-defined and strictly comparable conditions
and establish to what extent fusion of the approaches is pos-
sible and beneficial. This paper presents the challenge, the
dataset and the performance of the baseline system.
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1. INTRODUCTION
Following up from the last Audio Visual Emotion Recognition

Challenge (AVEC) event [26], which focused on emotion recogni-
tion as a regression problem, AV+EC 2015 aims to accelerate re-
search in automatic continuous affect recognition from audio, video
and, for the first time ever, physiological data. This is therefore the
first multimodal challenge bridging across audio-visual and physi-
ological information for emotion recognition in multimedia data.

One of the reasons that have motivated the inclusion of auto-
nomic signals in the AV+EC 2015 dataset, besides being comple-
mentary to audio-visual data for the description of affective be-
haviours [13], is that more and more wearable devices now in-
clude physiological sensors, such as electrodermal activity or elec-
trocardiogram, at an affordable cost, allowing affective interaction
through wearable computing in the near future [3]. Robust mod-
els of emotion from physiological signals are therefore required, as
well as the knowledge of their relevance in comparison with the
performance obtained with the traditional audio-visual models.

Emotion will have to be recognised in terms of continuous
time and continuous valued dimensional affect in two dimensions:



Table 1: Inter-rater reliability on arousal and va-
lence for the 6 raters and the 27 subjects of the
RECOLA database; raw or normalised ratings [18].

RMSE CC CCC ICC α
Raw

Arousal .344 .400 .277 .775 .800
Valence .218 .446 .370 .811 .802

Normalised
Arousal .263 .496 .431 .827 .856
Valence .174 .492 .478 .844 .829

arousal and valence. As benchmarking database the RECOLA mul-
timodal corpus will be used [20]. Even though this database does
not feature human-machine but rather human-human interaction,
we strongly believe that the latter is the most interesting type of
communication to study for the development of systems that will
interact with humans, as we want such systems achieving realistic
human-like behaviours in the near future.

Although we provide as baseline standard feature sets for audio,
video and physiological modalities, participants can use their own
algorithms to perform features extraction. The standard feature sets
can also be solely used to investigate machine learning algorithms.
We however strongly encourage participants to consider all modal-
ities for the emotion prediction task, which makes it possible to
evaluate the relative merit of each modality. Participants have only
five trials to upload their results on the test sets, whose labels are
unknown to them. The organisers preserve the right to re-evaluate
the findings, but will not participate themselves in the Challenge.

The Challenge baseline is the average performance over arousal
and valence from the best approach, which corresponds here to the
inclusion of all modalities. As evaluation measure, we chose the
Concordance Correlation Coefficient (CCC) [15], which combines
the Pearson’s correlation coefficient (CC) with the square differ-
ence between the mean of the two compared time series:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
, (1)

where ρ is the Pearson correlation coefficient between two time se-
ries (e. g., prediction and gold standard), σ2

x and σ2
y the variance

of each time serie, and µx and µy the mean value of each. There-
fore, predictions that are well correlated with the gold standard but
shifted in value are penalised in proportion to the deviation.

This paper is organised as follow: we next introduce the Chal-
lenge corpus and labels (Sec. 2), then audio, visual and physiolog-
ical baseline features (Sec. 3), and baseline results (Sec. 4), before
concluding (Sec 5).

2. RECOLA DATABASE
The RECOLA database [20] was recorded to study socio-

affective behaviours from multimodal data in the context of remote
collaborative work, for the development of computer-mediated
communication tools [19]. It is freely available for scientific pur-
poses from: https://diuf.unifr.ch/diva/recola/.

Spontaneous and naturalistic interactions were collected during
the resolution of a collaborative task that was performed in dyads
and remotely through video conference. Multimodal signals, i. e.,
audio, video, electro-cardiogram (ECG) and electro-dermal activ-
ity (EDA), were synchronously recorded from 27 French-speaking
subjects. Even though all subjects speak French fluently, they have
different nationalities (i. e., French, Italian or German), which thus
provide some diversity in the encoding of affect.

Table 2: Partitioning of the RECOLA database into
train, dev(elopment), and test sets.

# train dev test
female 6 5 5
male 3 4 4
French 6 7 7
Italian 2 1 2
German 1 1 0
age µ (σ) 21.2 (1.9) 21.8 (2.5) 21.2 (1.9)

Regarding the annotation of the dataset, time-continuous ratings
(40 ms binned frames) of emotional arousal and valence were per-
formed by six gender balanced French-speaking assistants for the
first five minutes of all recordings, because participants discussed
more about their strategy – hence showing emotions – at the begin-
ning of their interaction.

To assess inter-rater reliability, we computed the intra-class cor-
relation coefficient (ICC(3,1)) [24] and the Cronbach’s α [4]; rat-
ings are concatenated over all subjects. Additionally, we computed
the root-mean-square error (RMSE), the Pearson’s CC and the CCC
[15]; values are averaged over the C6

2 pairs of raters. Results indi-
cate a very strong inter-rater reliability for both arousal and va-
lence, cf. Table 1. A normalisation technique based on the Eval-
uator Weighted Estimator [9] and introduced in [18] is used prior
to the computation of the gold standard, i. e., the average of all rat-
ings for each subject. This technique has significantly (p < 0.001
for CC) improved the inter-rater reliability for both arousal and va-
lence, with a stronger improvement on the former dimension; CCC
has been improved by 56%. The Fisher Z-transform is used to per-
form statistical comparisons between CC in this study.

Finally, the dataset was divided into speaker disjoint subsets for
training, development (validation) and testing, by stratifying (bal-
ancing) on gender and mother tongue, cf. Table 2.

3. BASELINE FEATURES
In the followings we describe how the baseline feature sets are

computed for audio, video and physiological data.

3.1 Audio Features
In contrast to large scale feature sets, which have been success-

fully applied to many speech classification tasks [18, 26], smaller,
expert-knowledge based feature sets have also shown high robust-
ness for the modelling of emotion from speech [17, 2]. Some rec-
ommendations for the definition of a minimalistic acoustic standard
parameter set have been recently investigated, and have led to the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and to
an extended version (eGeMAPS) [7], which is used here as base-
line. The acoustic low-level descriptors (LLD) cover spectral, cep-
stral, prosodic and voice quality information and are extracted with
the openSMILE toolkit [8], cf. Table 3.

As the data in the Challenge contains long continuous record-
ings, we used overlapping short fixed length segments (3 s), which
are shifted forward at a rate of 40 ms, to extract functionals; the
arithmetic mean and the coefficient of variation are computed on
all 42 LLD. To pitch and loudness the following functionals are
additionally applied: percentiles 20, 50 and 80, the range of per-
centiles 20 – 80 and the mean and standard deviation of the slope
of rising/falling signal parts. Functionals applied to the pitch, jit-
ter, shimmer, and all formant related LLDs, are applied to voiced

https://diuf.unifr.ch/diva/recola/


Table 3: 42 acoustic low-level descriptors (LLD);
1computed on voiced and unvoiced frames, re-
spectively; 2computed on voiced, unvoiced and all
frames, respectively.
1 energy related LLD Group
Sum of auditory spectrum (loudness) Prosodic
25 spectral LLD Group

α ratio (50–1000 Hz / 1–5 kHz)1 Spectral
Energy slope (0–500 Hz, 0.5–1.5 kHz)1 Spectral
Hammarberg index1 Spectral
MFCC 1–42 Cepstral
Spectral flux2 Spectral
16 voicing related LLD Group
F0 (linear & semi-tone) Prosodic
Formants 1, 2, 3 (freq., bandwidth, ampl.) Voice qual.
Harmonic difference H1–H2, H1–A3 Voice qual.
Log. HNR, jitter (local), shimmer (local) Voice qual.

regions only. Additionally, the average RMS energy is computed
and 6 temporal features are included: the rate of loudness peaks per
second, mean length and standard deviation of continuous voiced
and unvoiced segments and the rate of voiced segments per sec-
ond, approximating the pseudo syllable rate. Overall, the acoustic
baseline features set contains 102 features.

3.2 Video Features
Facial expressions play an important role in the communication

of emotion [6]. They are usually quantified by two types of facial
descriptors: appearance and geometric based [25]. For the video
baseline features set, we computed both, using Local Gabor Bi-
nary Patterns from Three Orthogonal Planes (LGBP-TOP) [1] for
appearance and facial landmarks [28] for geometric.

The LGBP-TOP are computed by splitting the video into spatio-
temporal video volumes. Each slice of the video volume extracted
along 3 orthogonal planes (x-y, x-t and y-t) is first convolved with
a bank of 2D Gabor filters. The resulting Gabor pictures in the di-
rection of x-y plane are divided into 4x4 blocks. In the x-t and y-t
directions they are divided into 4x1 blocks. The LBP operator is
then applied to each of these resulting blocks followed by the con-
catenation of the resulting LBP histograms from all the blocks. A
feature reduction is then performed by applying a Principal Com-
ponent Analysis (PCA) from a low-rank (up to rank 500) approx-
imation [10]. We obtained 84 features representing 98 % of the
variance.

In order to extract geometric features, we tracked 49 facial
landmarks with the Supervised Descent Method (SDM) [28] and
aligned them with a mean shape from stable points (located on the
eye corners and on the nose region). As features, we computed the
difference between the coordinates of the aligned landmarks and
those from the mean shape, and also between the aligned landmark
locations in the previous and the current frame; this procedure pro-
vided 196 features in total. We then split the facial landmarks into
groups according to three different regions: i) the left eye and left
eyebrow, ii) the right eye and right eyebrow and iii) the mouth.
For each of these groups, the Euclidean distances (L2-norm) and
the angles (in radians) between the points are computed, provid-
ing 71 features. We also computed the Euclidean distance between
the median of the stable landmarks and each aligned landmark in a
video frame. In total the geometric set includes 316 features.

Both appearance and geometric feature sets are interpolated by a
piecewise cubic Hermite polynomial to cope with dropped frames.

3.3 Physiological Features
Physiological signals are strongly correlated with emotion [14,

13], despite not being directly perceptible the way audio-visual are.
Although there are some controversies about peripheral physiology
and emotion [22, 12], we believe that autonomic measures must be
considered along with audio-visual data in the realm of affective
computing, as they do not only provide complementary descrip-
tions of affect but can also be easily and continuously monitored
with wearable sensors [21, 16, 3].

As baseline features, we extracted features from both ECG and
EDA signals with overlapping (step of 40 ms) windows of 4 s length
[18]. From the ECG signal, we extracted 28 features: the heart rate
(HR) and its measure of variability (HRV), the zero-crossing rate,
the 4 first statistical moments, the normalised length density, the
non-stationary index, the spectral entropy, slope, mean frequency
plus 12 spectral coefficients, the power of HR in low frequency (LF,
0.04-0.15 Hz), high frequency (HF, 0.15-0.4 Hz) and the LF/HF
power ratio; the first order derivate is additionally computed on all
excepted HR and HRV, which provided 54 features in total.

EDA reflects a rapid, transient response called skin conductance
response (SCR), as well as a slower, basal drift called skin conduc-
tance level (SCL) [5]. Both, SCL (0–0.5 Hz) and SCR (0.5–1 Hz)
are estimated using a 3rd order Butterworth filter, 30 features are
then computed: the temporal slope of EDA (first coefficient of a
first order regression polynomial), the spectral entropy and mean
frequency of SCR, the non-stationary index, the normalised length
density, the 4 first statistical moments, the mean value of the first
order derivate and the proportion and mean of its negative part for
EDA, SCL and SCR. The first order derivate is additionally com-
puted for all, providing 60 features in total.

4. CHALLENGE BASELINE
All the five feature sets, i. e., audio, video (appearance and geo-

metric), ECG and EDA are normalised per recording (i. e., subject)
using a z-score and processed separately. For unimodal emotion
recognition, we used a hybrid decision-fusion based on Support
Vector Regression (SVR) and Neural Networks (NN).

For SVR, we used a linear kernel and trained a model with one
frame out of every twenty to reduce the computation time. The
training was performed with the Sequential Minimum Optimisation
algorithm implemented in Weka [11]; the complexity parameter C
was optimised on the development set with values in [10−4− 100].

For NN, we exploited all frames to train three types of architec-
ture with the CURRENNT toolkit [27] and by applying the same
setup as in [18]: i) feed-forward (FF, no contextual information),
ii) long short-term memory (LSTM, inclusion of past information)
and iii) bilateral long short-term memory (BLSTM, inclusion of
past and future information). The best architecture of NN is kept
according to the performance obtained on the development parti-
tion.

As the predictions made with either SVR or NN are partially
noisy, we applied a median-filtering with the window size opti-
mised on the development partition and values in [0.2− 20] s.

Fusion of SVR and NN predictions obtained on a given modality
is performed by a linear regression model:

PredSV R−NN = α ∗ PredSV R + β ∗ PredNN + εu, (2)

where PredSV R and PredNN are the predictions provided by
SVR and NN for a given modality, respectively, α, β and εu are
regression coefficients estimated on the development partition by
minimising the squared error, and PredSV R−NN is the fused pre-
diction.



Table 4: Results on the development (D) and test (T) partitions with decision-fusion of SVR and NN from
audio, video (appearance and geometric), ECG and EDA feature sets. Performance obtained with each
predictor is also provided for the CCC metric and the best NN architecture from the development partition
is given in parentheses; F: Feed-Forward, L: LSTM, B: BLSTM.

Arousal Valence
Modality RMSE CC CCC CCCSV R CCCNN RMSE CC CCC CCCSV R CCCNN

D-Audio .177 .409 .287 .137 .214 (B) .123 .115 .069 .069 .058 (F)
D-Video-appearance .214 .183 .103 .103 .079 (L) .117 .358 .273 .201 .273 (L)
D-Video-geometric .181 .361 .231 .056 .178 (L) .122 .423 .325 .282 .325 (L)
D-ECG .177 .399 .275 .167 .218 (B) .119 .317 .183 .135 .153 (B)
D-EDA .189 .210 .078 .051 .078 (F) .118 .337 .204 .139 .166 (F)
T-Audio .173 .322 .228 .172 .139 (B) .127 .144 .068 .068 .035 (F)
T-Video-appearance .180 .185 .114 .114 .017 (L) .124 .313 .234 .206 .234 (L)
T-Video-geometric .174 .273 .162 .130 .149 (L) .116 .400 .292 .205 .292 (L)
T-ECG .169 .290 .192 .177 .161 (B) .121 .285 .139 .088 .121 (B)
T-EDA .173 .204 .079 .104 .079 (F) .119 .336 .195 .158 .156 (F)

Table 5: Multimodal baseline results on the devel-
opment and test partitions with decision-fusion.

Arousal Valence
RMSE CC CCC RMSE CC CCC

Dev. .161 .559 .476 .105 .548 .461
Test. .164 .354 .444 .113 .490 .382

In order to ensure good generalisation abilities of the fusion of
the two predictors (i. e., SVR and NN), we empirically defined a
threshold on the relative improvement to consider the fusion as rel-
evant: if a relative improvement of more than 10 % is obtained with
the fusion of the two predictors on the development partition – in
comparison with the performance obtained by the best predictor
(i. e., either SVR or NN) – the fusion of SVR and NN predictions
is performed on the test partition; the best predictor is kept other-
wise and used on the test partition.

Multimodal fusion of the five modalities, i. e., audio, video (ap-
pearance and geometric), ECG and EDA, is then performed with
another linear regression model:

Predmulti = εm +

N∑
i=1

γi ∗ Predu(i), (3)

where Predu(i) is the unimodal prediction of the modality i from
the N available ones – obtained either by the fusion of SVR and
NN predictions or by the best of the two predictors, γi and εm are
regression coefficients estimated on the development partition, and
Predmulti is the fused prediction.

Results obtained on each of the five feature sets are depicted in
Table 4. Fusion of SVR and NN predictions shows that those two
predictors are complementary for half of the cases; SVR performs
best on the appearance features for arousal and on the audio fea-
tures for valence, whereas NN performs best on EDA for arousal
and on both appearance and geometric features for valence.

Acoustic features perform significantly better than all other
modalities on arousal (p < 0.05), despite the performance being
much lower than the one reported in [18], because of the impor-
tant reduction of the feature space we performed in this study (only
102 features are used here in total). Facial descriptors, i. e., both
appearance and geometric features, perform significantly better on
valence (p < 0.01), which is consistent with many other studies,
e. g., [18, 26]. Further, geometric features provide the best overall
performance on the prediction of valence, as it has also been shown

for the prediction of facial expressions as well as for the estima-
tion of their intensity [25]. Another remarkable result is that the
physiological signals are also well ranked in terms of performance
for emotion prediction: ECG performs second best on arousal and
EDA second best for valence by considering appearance and ge-
ometric features as a single modality. Autonomic measures have
therefore a strong potential to provide complementary descriptions
of affective behaviours in comparison to those obtained from audio-
visual data.

The best type of NN architecture, i. e., the type of contextual
information, seems to depend on the modality: FF provides best
performance for EDA, LSTM for facial descriptors and BLSTM
for ECG; results are more contrasted for audio data. These results
suggest that the most relevant features for EDA might be carried
by the SCL, which presents such slow variations over time that
they cannot be successfully modelled by the memory units used
in (B)LSTM. Whereas the body response in terms of heart rate can
vary rapidly over time and occur either before (e. g., by anticipation
of the stimuli) or after (e. g., by reaction to a stimuli) the expressed
emotion; it is thus better modelled with BLSTM. Regarding facial
expressions, the appraisal theory suggests that emotion should be
seen first in the face [23], which might explain the preference for
LSTM.

Multimodal baseline results are given in Table 5. The improve-
ment of the performance over the best unimodal prediction is very
high (p < 0.001), which thus show the relevance of using multi-
modal information for the time-continuous prediction of emotion
in terms of arousal and valence. In order to depict the contribution
of each modality in the prediction of emotion, we normalised the
linear regression coefficients that were learned for the multimodal
fusion model into a percentage:

Ci = 100 ∗ |γi|∑N
k=1 |γk|

, (4)

where Ci is the contribution of the modality i in percentage, and
γk are the regression coefficients of the multimodal fusion model.

Results show that even if the unimodal performance can be low
for a given modality and emotion, e. g., EDA for arousal or audio
for valence, cf. Table 4, all modalities contribute, at a certain extent,
to the prediction of arousal and valence when taken altogether, cf.
Figure 1. Overall, facial geometric and ECG based features are the
most contributive in the multimodal fusion model for both arousal
and valence.
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Figure 1: Percentage of contribution of each modality in the prediction of emotion; values are derived from
the multimodal fusion model; V-APP: video appearance; V-GEO: video geometric; ECG: electrocardiogram;
EDA: electrodermal activity.

5. CONCLUSIONS
We introduced the Audio-Visual+ Emotion recognition Chal-

lenge (AV+EC 2015), the fifth event in the AVEC series but also
the very first Challenge uniting audio-visual and physiological in-
formation. It addresses the detection of the affective dimensions
arousal and valence in continuous time and value, from audio,
video and – for the first time ever – physiological data. This pa-
per described AV+EC 2015’s challenge data, baseline features and
results.

By intention, we used open-source softwares for both features
extraction and machine learning algorithms. We also opted for
the highest possible transparency and realism for the baselines by
refraining from feature space optimisation and optimising on test
data. By using hybrid predictors (SVR and NN) combined with a
decision-level fusion of five multimodal feature sets (audio, facial
appearance, facial geometry, ECG and EDA), we showed that mul-
timodality is a key to achieve high performance in the prediction
of emotional arousal and valence from spontaneous recordings, as
all modalities contribute to the prediction of emotion. Further, we
also showed that physiological signals are complementary to audio-
visual data for the description of affective behaviours, which thus
confirm their strong potential for affective computing.
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