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Abstract

This thesis presents a fully automatic facial expression analysis system based on the Facial Action

Coding System (FACS). FACS is the best known and the most commonly used system to describe

facial activity in terms of facial muscle actions (i.e., action units, AUs). We will present our research

on the analysis of the morphological, spatio-temporal and behavioural aspects of facial expressions.

In contrast with most other researchers in the field who use appearance based techniques, we use a

geometric feature based approach. We will argue that that approach is more suitable for analysing

facial expression temporal dynamics. Our system is capable of explicitly exploring the temporal

aspects of facial expressions from an input colour video in terms of their onset (start), apex (peak)

and offset (end).

The fully automatic system presented here detects 20 facial points in the first frame and tracks them

throughout the video. From the tracked points we compute geometry-based features which serve as

the input to the remainder of our systems. The AU activation detection system uses GentleBoost

feature selection and a Support Vector Machine (SVM) classifier to find which AUs were present in an

expression. Temporal dynamics of active AUs are recognised by a hybrid GentleBoost-SVM-Hidden

Markov model classifier. The system is capable of analysing 23 out of 27 existing AUs with high

accuracy.

The main contributions of the work presented in this thesis are the following: we have created a

method for fully automatic AU analysis with state-of-the-art recognition results. We have proposed

for the first time a method for recognition of the four temporal phases of an AU. We have build the

largest comprehensive database of facial expressions to date. We also present for the first time in the

literature two studies for automatic distinction between posed and spontaneous expressions.
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Chapter 1

Introduction

The computer is a tool that humankind has been using for only a short time, and the way we use it is

constantly and rapidly changing. In the past, we used computers to speed up our work or, when they

became small and cheap enough to enter our homes, to provide entertainment. Nowadays computers

are no longer optional but essential to the functioning of our society. They control such important

tasks as stocking our supermarkets, guiding trains, traffic lights and they monitor the quality of our

water supply. The functioning of the computers performing these tasks is hidden to the general public.

This is because we do not interact with these computers directly. Instead the computer is indirectly

aware of our actions without us even noticing it (for instance, a system counts how many tubes

of toothpaste are sold) and we only perceive the outcome of the computer’s actions (there’s always

toothpaste in the store).

Just about every machine we own has some form of computational intelligence by the use of a micro-

processor. Our mobile phones, cars, stereos, media players, thermostats and washing machines are all

examples of this. But for all their powerful computing capabilities, we are painstakingly aware of our

tedious interaction with them. Often we feel that those machines are actually quite stupid, and don’t

understand what we really want or need. Your ‘intelligent‘ thermostat using temperature sensors fails

to notice that you’re actually feeling cold and your media player does not understand that you are not

in the mood right now for that sad, slow music. What is missing at this moment is a breakthrough

in the way machines sense human actions to understand their intentions. Only then can a natural,

human-centred way of interaction with our computerised environment be created.

In the future, we will probably interact even more frequently with computers and other intelligent
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machines, for an increasing number of everyday tasks. Futurists envision our environment equipped

with a plethora of invisible sensors that will anticipate every need of a human being. Our homes,

our means of transportation, the place where we work, will all intelligently interact with us. So-

cial robots will guide us in museums and help in our households. This vision of the future is often

referred to as ubiquitous computing [Weiser, 1991], ambient intelligence [Aarts, 2005], or human com-

puting [Pantic et al., 2006].

Due to the nature of these smart environments and the need to interact with invisible, intelligent,

embedded machines, an era of novel interfacing will arise. Machines will no longer have a well-defined

physical presence and by their capabilities of interconnection will not be confined to one central

location. This, in turn, means that a user will no longer be required to use one spatially fixed console.

Instead, interaction with the machine(s) will preferably be through many interconnected, unobtrusive,

remotely embedded sensors, shifting the user input mainly to remote sensing.

This remote sensing could free us from the primitive, rigid interaction with machines. Instead of

using a keyboard and a mouse, a person could issue commands using his/her voice, facial expression

and gestures. The machine will read human motion, identity, posture, gait, hand gestures, facial

expression etc. This is called human sensing [Pantic et al., 2006]. The smart environment can then

give feedback by executing the perceived command or, if it is uncertain about the command given, by

asking for confirmation or extra information. Feedback could be provided through a synthetic voice,

visual output on screens, or, in a more abstract fashion, by changing environmental variables such

as lighting, temperature or volume of music. This will provide the natural way of interaction with

machines that we aim for.

Besides reading instantaneous commands the smart environment could also record and analyse long-

term behaviour of humans. Introducing this temporal aspect of the user input, a machine could make

decisions based on, for instance, the user’s mood, energy level, physical pain, integrity, or, based on

experience, the user’s most probable plan of action. To name a few examples, your house could sense

that you are in a very good mood and that it is Friday evening. Based on the knowledge that your

house has gathered over time about your character, it decides to play up-tempo music at a decent

volume and set the lighting bright and colourful. Or your house could recognise the pattern of actions

you typically perform when you are leaving, and, because it is morning, will start closing the windows

and will turn off the heating. In another application area, a hospital could be equipped with webcams

on each patient’s bed, allowing for continuous monitoring of the pain that patients experience in terms
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of its intensity and the type of pain (e.g. acute or prolonged).

Probably the most important aspect of human sensing is the understanding of a person’s facial ex-

pressions. Facial expressions help to synchronise turn-taking, to signal comprehension or disagree-

ment and to let a dialogue run more smoothly, with fewer interruptions. With facial expressions

we clarify what is said by means of lip-reading, we stress the importance of the spoken message by

means of conversational signals like raising eyebrows, and we signal boredom, emotions and inten-

tions [Russell and Fernandez-Dols, 1997].

A major limitation of the majority of existing facial expression recognition systems is that they focus

on emotion recognition only. However, displaying emotions is just one of the many functions of facial

expressions. As stated above, the face sends many non-emotional communicative signals. Therefore we

aim in this work to recognise instead every possible facial action by following the theory of the Facial

Action Coding System (FACS, [Ekman et al., 2002]). This coding system defines atomic facial muscle

actions called Action Units (AUs). With FACS, every possible facial expression can be described as

a specific combination of AUs, including, but not limited to, expressions of emotions. A detailed

introduction to FACS will be provided in section 2.1.4 of this thesis.

Existing AU recognition systems only focus on the morphological aspects of a facial expression. That

is, they only report on what facial muscles, or AUs, were activated. The body of research in cognitive

sciences which suggests that the temporal dynamics of human facial behaviour (e.g. the timing and

duration of facial actions) are a critical factor for interpretation of the observed behaviour, is large

and growing [Cohn and Schmidt, 2004, Bassili, 1978, Hess and Kleck, 1990]. Some researchers do use

aspects of facial expression temporal dynamics to increase the recognition rates of facial expression

recognition systems (e.g. [Littlewort et al., 2004, Kaliouby and Robinson, 2004]). However, despite

their reported significance, no research group has yet endeavoured to analyse these facial expression

temporal dynamics explicitly. In this thesis we will propose to do so for the first time.

Temporal dynamics of facial expressions contain an enormous amount of information about human

behaviour. Facial expression temporal dynamics are essential for categorisation of complex psycholog-

ical states like various types of pain and mood [de C. Williams, 2002]. They are also the key param-

eter in differenting between posed and spontaneous facial expressions [Ekman and Rosenberg, 2005,

Hess and Kleck, 1990]. For instance, it has been shown that spontaneous smiles, in contrast to posed

smiles (like a polite smile), are slow in onset, can have multiple peaks of AU12 (rises of the mouth
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corners, as in smiles) , and are accompanied by other AUs that appear either simultaneously with

AU12 or follow AU12 within 1 second [Cohn and Schmidt, 2004].

One can discern two approaches to facial expression analysis: geometry-based approaches and appear-

ance based approaches. Appearance based approaches use photometry-related properties of images

such as colour, intensity, texture, or the presence of corners and edges. This includes approaches that

are more abstract, but that still rely on the basic image intensity/colour properties of an image such as

Gabor wavelet features or basic Principal Component Analysis (PCA) applied to the intensity values

of an image.

Approaches using geometric features were proposed from the beginning of automatic facial expression

analysis [Parke, 1974]. An approach using geometric features, in contrast to an appearance based

approach, employs the geometrical properties of a face such as the positions of facial points relative to

each other, the distances between pairs of points or the velocities of separate facial points. Recently

it has been claimed that appearance based approaches are superior to geometry based approaches for

the recognition of AU activation [Bartlett et al., 1999]. However, it has been shown that this is not

always the case [Pantic and Patras, 2006]. In this thesis we will show that again.

In this thesis we have chosen to use geometric features. Bassili et al. [Bassili, 1978] already have shown

that the movements of facial feature points are good descriptors of facial expressions, and based on

these facial point movements it is theoretically possible to recognise 26 out of the 32 AUs [Bassili, 1978].

We believe that a geometric feature based approach performs as well as appearance based techniques

for the recognition of AU activation. In situations of large head motion geometric feature based

approaches may even outperform appearance based techniques, as the latter are very sensitive to

registration errors. But more importantly, they provide a more intuitive approach to the analysis

of facial action temporal dynamics. We will argue that with a geometry-based approach, extracting

temporal dynamics attributes is intuitive and straightforward. There is a direct relationship between

the velocity vectors of characteristic facial points on the one hand and the temporal dynamics of facial

expressions on the other hand. Although it is not impossible to analyse facial temporal dynamics with

appearance based approaches, a similar direct relationship does not exist.

The goal of this thesis is to present our research on the automatic analysis of the morphologic and

temporal dynamic aspects of facial expressions. We will begin by giving an overview of the various

theories that exist on ways to describe facial expressions (chapter 2) and an overview of existing
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databases for facial expression recognition (chapter 3). We will then present our geometric feature

based system.

The description of the system is split into four chapters. In chapter 4 we will describe how we localise

20 fiducial facial points in the first frame of a video. Then, in chapter 5 we will describe how we track

these facial points and extract features from the tracking data. Finally, in chapter 6 we give a detailed

description and evaluation of our methods to detect the activation of AUs in a video sequence and in

chapter 7 we explain how we recognise the temporal patterns of AUs.

Three studies showing how our facial action analysis system can be used for human behaviour analysis

are presented in chapters 8 and 9. While the main goal of this thesis is the automatic recognition and

analysis of AUs, we have also investigated the possibility of recognising emotions. In chapter 8 we

propose to use our geometric feature based approach to recognise emotions, either directly from the

geometric features or in a two-step way in which we first detect AU activations and base our emotion

recognition on the AU detection results. In chapter 9 we present two studies explaining how we have

used our method to distinguish posed from spontaneous brow actions and to distinguish posed from

spontaneous smiles. In the latter, not only have we used information from the face, but we have fused

this data with cues from head and shoulder movements as well. Finally, in chapter 10 we provide

concluding remarks about our work and give some directions for future research.

1.1 Contributions

This thesis offers the following innovative contributions to the field of facial action analysis:

1. This thesis presents a geometric feature-based method for fully automatic facial Action Unit

analysis from near-frontal-view videos, integrating face detection, facial point detection, tracking

and facial action analysis. The method attains state-of-the-art recognition results and can detect

22 out of 32 Action Units.

2. This thesis presents a method to fully automatically recognise the four temporal phases neutral,

onset, apex, and offset of facial muscle actions in near-frontal-view videos for the first time in

the literature.

3. This thesis introduces the MMI-facial-expression-database, which is the first searchable database

publicly online available to contain videos of spontaneous facial expressions which are FACS
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annotated, videos of synchronised frontal/profile view recordings of the face and a very large

number of videos showing single-AU activations.

4. This thesis reports on using multiple affective cues, namely facial expression, head motion and

shoulder actions, to distinguish between posed and spontaneous expressions fusing multiple visual

cues for the first time in the literature.

5. This thesis provides insights into the ongoing question about the way emotions could be recog-

nised by computers, by implementingdifferent human cognitive models.

6. This thesis report on the award-winning live demonstration that integrates our facial action

analysis systems with an artificial intelligent portrait painter. The system paints a sitter’s

portrait in an emotionally enhanced way using the image where the sitter showed maximum

emotion.

The facial point detection and point tracking methods were developed by colleagues during the author’s

position as a PhD candidate in Dr. Maja Pantic’s laboratory. The head tracker used in chapter 9

was developed by the robotics institute at Carnegie Mellon University, Pittsburgh USA, and the face

detector used in chapter 4 was developed by Dr. Marian Bartlett’s group at the University of California

San Diego, USA. All other methods, as well as the integration of all the presented methods into one

system, were developed by the author.

1.2 Application areas

A system that could enable fast and robust facial expression recognition would have many uses in both

research and application areas as diverse as behavioural science, education, entertainment, medicine,

and security. Following are some applications that we think are viable in the near future. Note that

this list is just a very small slice of the possible applications.

• Continuous pain monitoring of patients. Monitoring the pain level of patients in hospital is a

complicated task. The fact that it is primarily a mental state makes it hard to measure pain

objectively. Currently nurses visit a patient five times a day and ask them to self-report their

pain on a 5-point scale.
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There are three major problems with this approach: first of all, with only five checks a day, it

is discrete in time. Secondly it is an extremely subjective score, both from the point of view

of the person describing the pain and the point of view of the person recording the pain. A

patient might act tough and under-report his pain or might whine and exaggerate the pain felt.

On the other hand, the nurse might think that the patient is exaggerating while this does not

necessarily have to be the case. The third major issue is that the method used for keeping this

pain diary does not differentiate between different types of pain (e.g. acute or prolonged pains).

An automatic facial expression recognition system could solve all three problems in one go.

It has been shown that it is possible to derive a measure of pain and to distinguish between

different types of pain from a patients’ facial expressions [de C. Williams, 2002]. Finally, if such

a system would be able to run in at least near-real time, an incredible increase in accuracy

and reliability of measurements as well as an increased reaction speed to acute pain could be

achieved, compared with the current five-times a day measurement.

• Avatars with expressions. Virtual environments have become tremendously popular in the 21st

century. In gaming, the immensely popular massive multiplayer roleplaying game World of War-

craft (WoW) has 8.5 million users, while Secondlife is a virtual world with over 1.5 million active

users. In Secondlife, interaction with other users and enhancing the appearance of your avatar

are considered very important. Secondlife has an entire economy of its own, with people spending

about 2 million US Dollars every day on new clothing, cars, houses etc. If the avatars were able

to mimic their user’s facial expressions recorded by a webcam and analysed by a facial expression

recognition system, the level of immersion in the virtual world would increase. It would make

interaction with other users more realistic and possibly easier. The automatic analysis of facial

expressions on the client-side of Secondlife would ensure minimal use of bandwith, as only very

little data has to be send to describe a facial expression in terms of its Action Units.

Apart from improved avatar-avatar interaction (and thus, through this layer of abstraction,

human-human interaction), the virtual environment and its agents could benefit from reading

the user’s expressions. It would open up possibilities for a more varied dialogue between an

artificial intelligent agent and a user’s avatar, where the agent reacts appropriately to happy or

angry faces. This would significantly increase the level of immersion. Also, if the user is immersed

in a gaming environment, the game could adapt its difficulty level based on information from the

facial expressions of the user. For example, if the user is playing a shoot-em-up game and he is
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looking bored, the game could decide to send more enemies, or increase the tactical intelligence

of the existing enemies.

• Smart homes. Remote facial expression recognition would be an important element of the

human sensing capabilities of ambient intelligent homes of the future. By measuring the facial

expressions of the inhabitants over time, the house could adapt atmospherical parameters such

as lighting and music. Facial expressions could also be used as instant commands. This would be

especially efficient in combination with gaze direction recognition. For instance, a frown made

while looking at the stereo could make it skip this song and start playing the next one.

• Affective robots. Traditional robots operate in environments that do not contain humans, mainly

in factories or environments that are inherently hostile to humans (e.g., near bombs or in nuclear

power plants). However, there has been a major shift towards so-called social robots. In contrast,

these robots are designed to have contact with humans. This new generation of robots has been

designed for tasks such as helping the elderly and the disabled in their homes [Forlizzi, 2005] or

as robot pets and toys.

Because the whole idea behind these robots is communication with humans, it is very important

to improve the current state of human-robot communication and interaction so that it will run

smoother and with fewer mistakes. The Social Robots Project at Carnegie Mellon University

states its mission as ‘wanting robots to behave more like people, so that people do not have to

behave like robots when they interact with them‘1. To attain such human-robot interaction, it

is of paramount importance for the robot to understand the human’s facial expressions.

• Detection and treatment of depression and anxiety. According to recent studies, anxiety dis-

orders cost the United States of America 46.6 billion USD in 1990, nearly one-third of the

nation’s total mental health bill of 147 billion USD. The USA National Institute of Mental

Health reported that 90% of the people with emotional illness will improve or recover en-

tirely if they get treatment2. Research based on the FACS has shown that facial expressions

can predict the onset and remission of depression, schizophrenia, and other psychopatholog-

ical afflictions [Ekman and Rosenberg, 2005], can discriminate suicidally from non-suicidally

depressed patients [Heller and Haynal, 1994] and can predict transient myocardial ischemia in

coronary patients [Rosenberg et al., 2001]. FACS has also been able to identify patterns of

1CMU social robots project, http://www.cs.cmu.edu/ social. Date of access: June 29, 2007
2Health discovery, http://health.discovery.com/centres/mental/articles/signofanxiety/signsofanxiety.html, Date of

access: June 29 2007
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facial activity involved in alcohol intoxication that observers not trained in FACS failed to

note [Sayette et al., 1992]. This suggests there are many applications for an automatic facial

expression recognition system based on FACS.
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Chapter 2

Facial Expression Analysis

The face is an extremely familiar yet fascinatingly surprising thing. We are accustomed to see faces

many times a day, yet the same faces that are most familiar to us also have the ability to riddle us

time and time again. Altough we can invoke clearly in our mind the image of a characteristic smile or

frown of someone we know well, many times we find ourselves thinking “What does she really want?”

when an unexpected expression is displayed by the same person. They say that some people’s faces

can be ‘read like a book’, while others have a ‘poker face’ that apparently reveals nothing of their

feelings or intentions. It is this paradox of the obvious and the mysterious that intrigues people to

study the face.

The face is our main means of interaction with the world around us. It harbours all five senses and is

the exclusive site of four of them: smell, taste, vision and hearing. The face is our means to identify

people, to assess age, ethnic group, beauty, and the sex of an individual. It is our most important mode

of non-verbal communication [Ambady and Rosenthal, 1992], with a wealth of communicative signals

coming from the facial expressions, head movements and gaze directions [Ekman and Friesen, 1969].

It is therefore not strange that humans have been studying facial expressions since ancient times.

The first studies of facial expressions belonged to the realm of philosophy, with great thinkers like

Aristotle and Stewart theorising about the form and function of emotions. Greek drama masks as-

sociated the appearance with both emotion and character, while the first treatise on the face and

facial expressions is from ca. 340 B.C. and stated that physiognomic traits were best discerned by

comparing people with animals [Fridlund, 1994]. The author, unknown, but thought to be Aristotle,

did not regard the reading of emotions as particularly important.

11
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With Darwin and his contemporary Duchene, the study of facial expressions became an empirical

study. Darwin studied the similarities and differences of displays of emotion between humans and

animals in his book The Expression of the Emotions in Man and Animals [Darwin, 1872], concluding

that “the young and the old of widely different races, both with man and animals, express the same

state of mind by the same movements”. Duchene [de Bologne, 1862] used electrical stimuli on faces

of living and dead prisoners to determine which facial muscles belonged to each facial expression.

Darwin’s studies created large interest among psychologists and cognitive scientists. The 20th century

saw many studies relating facial expression to emotion and inter-human communication. Most notably,

Paul Ekman reinvestigated Darwin’s work and claimed that there are six universal emotions, which

are produced and recognised independently of cultural background [Ekman and Rosenberg, 2005].

However, not all scientists agree with this. People like Alan Fridlund argued that emotions do not

mirror what we feel, instead they are used to coerce other people into a desired action [Fridlund, 1994].

A smile might be used to persuade someone to proceed or come closer while an angry face might signal

that the second party should back off, or face the consequences.

Since 1974 [Parke, 1974] the investigation of facial expressions was joined by the computer science

community which, inspired by the findings of the cognitive scientists, endeavoured to automate facial

expression analysis from videos or still images. Many different approaches were used, ranging from

holistic methods based on colour or intensity, to feature based approaches that use the positions of a

number of facial points to classify facial expressions.

In the following I will give an overview of the related work in automatical facial expression analysis.

Because, as stated above, automatic facial expression analysis is often inspired by and builds upon the

research by cognitive scientists, I will start in section 2.1 with an overview of the most important the-

ories in that field, including various proposals of coding systems to classify facial expressions. We will

argue that the Facial Action Coding System, discussed in section 2.1.4 is the preferred coding system.

Next, in section 2.2 we will discuss the the most important works in facial expression recognition,

keeping in mind our choice of FACS as our coding system.
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2.1 Facial affect theory and facial action coding

When we start designing a system that is to classify facial expressions, probably the first question

that jumps to mind is ‘What are the atomic elements of a facial expression’, i.e. what are the classes

our classifiers have to learn? Let us present first the relevant findings of cognitive scientists.

There are two different ways to analyse facial expressions: one considers facial affect (emotion) and

the other facial muscle actions [Pantic and Rothkrantz, 2000, Pantic and Rothkrantz, 2003, Tian

et al., 2005]. These two streams stem directly from the two major approaches to facial expression

measurement in psychological research [Cohn, 2006]: message and sign judgement. The aim of the

former is to infer what underlies a displayed facial expression, such as affect or personality, while

the aim of the latter is to describe the physical appearance of the shown behaviour, such as facial

movement or facial component shape.

While message judgement is all about interpretation, sign judgement is agnostic, independent from

any interpretation attempt, leaving the inference about the conveyed message to higher order decision

making. The most commonly used facial expression descriptors in message judgement approaches are

the six basic emotions (anger, disgust, fear, happiness, sadness and surprise) [Cohn, 2006] proposed

by Ekman [Ekman and Friesen, 1969, Ekman, 1992], Plutchik’s emotion wheel [Plutchik, 1980] and

Russell’s circumplex model [Russell, 1980]. These coding systems all address fairly basic emotions.

Baron-Cohen [Baron-Cohen et al., 2004] proposed a taxonomy of more complex mental states, de-

scribing the message of a facial expression in terms as ‘confused’, ‘concentrating’, or ‘attentive’. The

most popular sign judgement systems are the Facial Action Coding System (FACS) and MPEG-4.

The last two systems, FACS and MPEG-4, have many elements in common. Yet FACS is used to de-

scribe facial muscle actions and is used both by computer scientists and psychologists while MPEG-4

codes the actual movement of facial components and is used exclusively by computer scientists. In

the following subsections these various coding systems will be explained.

2.1.1 Ekman’s Six Basic Emotions

The most commonly used facial expression coding system in the message judgement approach relates

to the six basic emotions proposed by Ekman [Ekman and Friesen, 1969]. He suggests that the six

basic emotions anger, disgust, fear, happiness, sadness and surprise have evolved in the same way for
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all mankind. Moreover, the theory suggests that our facial expressions show these emotions and that

these displays of emotion are produced and recognised universally, that is, independent of culture or

other nurture effects [Keltner and Ekman, 2004]. These six basic emotions are thus linked to a small

number of universal prototypic facial expressions.

This theory of facial expressions mirroring a fixed set of universal emotions was inspired directly by

Darwin’s observations that both humans and animals display similar expressions in similar situa-

tions [Darwin, 1872]. Both dogs, cats and humans displayed a particular expression when they were

in pain, felt affection or had great anxiety. The way the expression was shown was different for each

race, but the underlying so-called ‘felt’ emotion that caused the expression was the same. As we

do not share a culture with the primates he studied, his observations led Darwin to the conclusion

that our facial expressions belong to our evolutionary, rather than to our cultural, heritage. These

observations, published in 1872 were left undebated for almost 100 years. Then, in the 1960s, Paul

Ekman picked up his research in an effort to validate Darwin’s theories.

Ekman studied a culturally isolated New Guinean society (the South Fore), first from film and later in

person [Ekman, 1982]. From the films he noted that he ‘saw nothing [he] hadn’t seen before’. When he

visited the stone-age society himself he subjected the South Fore people to an experiment of emotion

recognition. He showed them pictures of people from different societies displaying an expression of

affect. According to his study, the tribesmen were capable of recognising six basic emotions, thereby

showing that these emotions were hardwired in our genetics instead of learned from our culture.

Dacher Keltner, who studied emotions together with Paul Ekman, said that “Our facial expressions

of emotions are the products of evolution, to help us survive, reproduce, and get along”. While this

might be true, it does not guarantee that what we feel is directly and automatically shown in our

facial behaviour. Humans are great liars [Smith, 1995] and to be able to live in a social group, much

evolutionary effort seems to have been put into creating techniques to disguise our true feelings.

So if we both show a facial expression when we truly feel an emotion as well as when we don’t feel

the emotion but only want to display the expression of that emotion for some social effect, why would

we use the shown facial expression as an indicator of the felt emotion? Ekman acknowledges this

problem but in later studies also showed that it is possible to recognise from barely detectable facial

cues whether a shown expression of affect is genuine or not. According to Ekman, differences in the

temporal dynamics of facial expressions and of co-occurrences of certain facial muscle actions can
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indicate whether an expression was genuine (we explore these claims rigorously in chapter 9). Even

if this is true1 and we can either recognise the felt emotion or recognise that the displayed expression

does not reflect the subject’s felt emotion, we do not think Ekman’s system is suitable to describe

facial expressions.

Most importantly, while Ekman concluded that these six basic emotions are universally recognised and

produced, he never claimed that these are the only possible emotions nor the only or fundamental facial

expressions. And his system does not allow us to describe the other emotions; with Ekman’s system

of six basic emotions, we cannot describe social signalling such as a brow flash, which is often used in

western society to greet a known person, or brow lowering to indicate that one doesn’t understand or

agree with the other person. So, while there might be a link between facial expression and emotion,

the six basic emotions do not allow us to describe all possible facial expressions and is thus not suitable

for an automated facial expression analysis system. It is a judgement system that does not attempt

to encode all possible meanings of a facial expression, only a small number of universal emotions. Our

goal is to be able to analyse all possible facial expressions and this coding scheme is therefore not

suitable for our system.

2.1.2 Plutchik’s Emotion Wheel

While Ekman proposed that there are six basic emotions, Plutchik [Plutchik, 1980] on the other hand,

proposed eight primary emotions: acceptance, anger, anticipation, disgust, fear, joy, sadness and

surprise; every other emotion can be produced by mixing the primary ones. To this aim he introduced

the emotion wheel, which is similar to a palette of colours. The three dimensional circumplex model

describes the relationships between concepts of emotion with each emotion smoothly flowing into

another when we traverse a path on the surface of the 3-dimensional cone shown in Fig. 2.1.

The cone’s vertical dimension represents the intensity of the emotion and the position on the circle

defines in what basic emotion sector we are. The eight sectors are designed to indicate that there

are eight primary emotion dimensions, formed by four pairs of opposites. Secondary emotions are

produced by combinations of primary emotions that are adjacent on the emotion wheel. For instances,

Plutchik characterises “love” as a combination of “joy” and “acceptance”, whereas “submission” is a

combination of “acceptance” and “fear”.

1We have reason to believe this it is possible to detect whether an expression was posed or spontaneous, see section 9
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Figure 2.1: Plutchik’s emotion wheel (left) and the accompanying emotion cone (right).

The reason for inclusion of the eight primary emotions is that they all have a direct relation to

adaptive biological processes. For instance, when we gain a valued object, the cognitive process is

that we ‘possess’ and thus we feel ‘joy’. The associated action would be to retain this state or repeat

the process, gaining more valued objects and thereby feeling joy again. The theory is very much based

on our inner state, i.e. on the way we actually feel.

This theory has similarities with Fridlunds’ theory which states that our shown expressions are learned,

socially influenced tools to obtain a goal. However, the same argument that we made against the six

basic emotions holds here: nothing guarantees that what we feel is automatically shown by our facial

expressions. Being a judgement system that is based on feeling, it is problematic to use this system

to describe non-emotional communicative signals such as a brow-flash used in greetings. Therefore,

while Plutchik’s emotion wheel might be a good classification system of what we feel, it need not be

a good classification system to describe the shown facial expression.
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Figure 2.2: Russell’s circumplex model of emotions, showing the emotion space spanned by the bipolar
continui valence andarousal.

2.1.3 Russell’s Circumplex model

Many cognitive scientists oppose the theory of a set of discrete, basic emotions [Mandler, 1984,

Ortony and Turner, 1990, Russell, 1995, Turner and Ortony, 1992]. Some of these opponents instead

take a dimensional view of the problem. In their view, affective states are not discrete and independent

of each other, instead they are systematically related to one another [Cacioppo and Berntson, 1994,

Mehrabian and Russell, 1973, Smith and Ellsworth, 1985].

Perhaps the most influential of the scientists who proposed this systematic view is James A. Russell.

He proposed a system of two bipolar continui, namely valence and arousal [Russell, 1980]. Valence

roughly ranges from sadness to happiness while arousal ranges from boredom or sleepiness to frantic

excitement. According to Russell, all emotions lie on a circle in this two dimensional space (see

Figure 2.2).

These dimensions are commonly treated as independent factors, but real-world experience suggests

that they are often correlated. Negative stimuli tend to have a higher intensity (few pleasant things are

felt as intensely as truly unpleasant things), and higher intensity tends to amplify valence (a very large

steak is much more pleasant than a small steak). Interactions of this nature often make it difficult to

dissociate the 2 dimensions. This results in self-reported emotions not lying on a circle, as theorised

by Russell, but more in V-like shapes [Bradley and Lang, 2000, Merkx et al., 2007].

While a continuous space could possibly represent all possible facial expressions, this is not guaranteed
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Figure 2.3: Some examples of Action Units. Action Units are atomic facial muscle actions described
in FACS.

by Russell’s theory and indeed has not been shown. It is unclear how a facial expression should be

mapped to the space or, vice versa, how to define regions in the valence/arousal space that correspond

to a certain facial expression. Being a judgement system that is based on feeling, it is again problematic

to use this system to describe non-emotional communicative signals. All this leads us to the conclusion

that this system is not to be preferred for our purposes.

2.1.4 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) [Ekman et al., 2002] is the most widely used sign judgement

system. The FACS associates facial expression changes with the actions of the muscles that produce

them. It defines 32 atomic actions: 9 action units (AUs) in the upper face, 18 in the lower face, and

5 AUs that cannot be classified as belonging to either the upper or the lower face (for examples, see

figure 2.3). Besides the AUs, there are also so-called action descriptors (ADs). There are 11 action

descriptors for head position, 9 for eye position, and 14 for miscellaneous actions. Tables 2.2, 2.3 and

2.4 lists all 32 AUs.

AUs are considered to be the smallest visually discernable facial movements. They are atomic, meaning

that no AU can be split into two or more smaller components. Any facial expression can be uniquely

described by a combination of AUs. The FACS also provides the rules for recognition of AUs’ temporal

segments (onset, apex and offset) and provides guidelines on how to score the intensity of a facial action

on a five-point scale.

Using FACS, human coders can manually code nearly any anatomically possible facial expression,

decomposing it into the specific AUs and their temporal segments that produced the expression. As
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Figure 2.4: The facial muscles seen from the side (image taken from Gray’s Anatomy)

AUs are independent of any interpretation, they can be used by any higher order decision making

process including recognition of basic emotions [Ekman et al., 2002], or pre-programmed commands

for an ambient intelligent environment.

As stated above, the FACS has an anatomical basis. Facial muscles were systematically studied for

the first time by Duchene [de Bologne, 1862]. Since then many studies have been carried out on the

functioning of our facial muscles. Figure 2.4 shows the major facial muscles. There are about fifteen

muscles that are primarily used to create facial expressions. These muscles are described in greater

detail in Faigan’s work [Faigan, 1990]. The muscles of the upper half of the face frequently used in

facial expressions are illustrated in figure 2.5, and the muscles of the lower half of the face in figure 2.6.

The muscle used to produce AU5 (raising of the upper eyelid) can’t be seen from these images, as

it actually resides on the inside of the eye socket. Figure 2.7 illustrates how the elevator palpebrae

superior is attached to the eyelid. A brief description of these muscles is presented here. We use the

terminology of the FACS; where the muscle emerges is where it is attached to the bone, and where

the muscle attaches is where it connects with the soft tissue of the face.

1. Orbicularis oculi : This muscle, circumfering the eyes, emerges from the inner side of the eye

socket and attaches to the skin of the cheek and the eyelids. It is used for squinting, narrowing
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Figure 2.5: Upper face muscles used to produce facial expressions (image taken from Gray’s Anatomy).

Figure 2.6: Upper face muscles used to produce facial expressions (image taken from Gray’s Anatomy).
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Figure 2.7: Illustration of the elevator palpebrae superior, used to raise the upper eyelids (AU5, image
taken from Gray’s Anatomy).

of the eye, and raising the cheeks.

2. Levator Palpebrae: This muscle emerges from inside the eyesocket, above the eye, and attaches

to the upper eyelid. It is used to open the eyes. As such, it is normally contracted a little when

we have the eyes open. Stronger contractions occur when we display, for example, surprise.

3. Levator Labii Superioris: Emerges from the medial infra-orbital margin, i.e. the lower part of

the cheekbone, and is attached to the skin and tissue of the upper lip. Point of attachment is

halfway between the mouth corner and the philtrum2. This muscle is used in sneers or displays

of disgust.

4. Zygomaticus major : This muscle emerges from the outside of the zygomatic bone, i.e. the

cheekbone. It attaches to the skin and tissue of the upper lip, just inward of our mouth corners.

This muscle produces smiles.

5. Zygomaticus minor : This muscle runs parallel to the zygomaticus major, but more inward,

towards the nose. As such, it attaches to the upper lip a bit more inward too, halfway between

the Zygomaticus major and the levator labii superioris. It emerges from the lateral infra-orbital

margin, above and inward relative to where the zygomaticus major emerges.

6. Risorius: Emerges from the deep fascia of the side of the face and the parotid region which

extends to the neck. It attaches to the mouth corner and is used to widen the mouth laterally,

such as in displays of fear.

7. Frontalis: This muscle originates near the top of the skull and attaches to the skin and tissue

under the eyebrows. It is a very wide muscle, and not all parts of it need be contracted at the

2The philtrum is the vertical depression in the centre of the upper lip directly under the tip of the nose
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same time. As such, it is responsible for raising both the inner and the outer eyebrows.

8. Orbicularis oris: This muscle, circumfering the mouth, emerges near the midline on the anterior

surface of the maxilla and the mandible. It attaches to the mucous membrane of the margin of

the lips and the tissue directly above and under the lips.

9. Corrugator Supercilii : This muscle emerges from the medial superciliary arch, runs across the

nasal bridge and attaches to the skin of the medial forehead, under the inner portion of the

eyebrows. It is used to lower the inner eyebrows and wrinkles the skin between the eyebrows.

Four relatively distinct movements can be produced by orbicularis oris, a pressing together, a

tightening and thinning, a rolling inwards between the teeth, and a thrusting outwards of the

lips.

10. Procerus: This muscle emerges from the nasal bone and attaches to the skin of the medial

forehead. It is used to wrinkle and frown the forehead.

11. Depressor anguli oris: Also called triangularis, this muscle emerges from the lower margin of

the sides of the jaw and attaches to the tissue and the skin under the mouth corner. It is used

to lower the mouth corners.

12. Depressor labii inferioris: This muscle emerges from the lower margin of the sides of the jaw

and attaches to the skin of the lower lip. It is used to depress the lower lip laterally.

13. Mentalis: This muscle emerges from middle of the lower jaw and attaches to the skin of the

chin. It is used to elevate and wrinkle the skin of the chin and protrude the lower lip.

14. Nasalis: This muscle actually consists of three muscles: the compressor, dilator and depressor.

They emerge from the frontal process of maxilla and attach to the nostrils. Their function is

opening (flaring) and closing the nostrils, e.g. in forced respiration.

15. Levator anguli oris: This muscle emerges from the anterior surface of the maxilla below the

infraorbital foramen (between the cheekbone and the nose) and attaches to the outer end of the

upper lip. It elevates the angle of the mouth and as such is used in smiles.

A point of caution is justified concerning the list of muscles given above. Although the list above

summarises the most important muscles involved in the activation of AUs, the list is by no means

exhaustive. To give an indication of the complexity of the problem, some human anatomy researchers
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AU Muscle AU Muscle

1 Frontalis (medial) 2 Frontalis (lateral)
4 Depressor supercilii, Corrugator, Pro-

cerus
5 Levator Palpebrae

6 Orbicularis oculi (pars orbitalis) 7 Orbicularis oculi (pars palpebralis)
8 Orbicularis oris 9 Levator Labii Superioris (alaeque

nasi)
10 Levator Labii Superioris (caput in-

fraorbitalis)
11 Zygomatic minor

12 Zygomaticus major, Levator anguli
oris

13 Caninus, Levator anguli oris

14 Buccinator 15 Depressor anguli oris, Triangularis
16 Depressor labii inferioris 17 Mentalis
18 Incisivus Labii 20 Risorius
21 22 Orbicularis oris (outer part), Buccina-

tor
23 Orbicularis oris (inner part) 24 Orbicularis oris (inner part)
25 Depressor labii inferioris, Mentalis,

Orbiculairs oris
26 Temporalis, Masseter

27 Digastric, Temporalis, Masseter 28 Orbicularis oris
31 38 Nasalis (pars alaris)
39 Nasalis(pars transversa), Depressor

septi nasi
43 Orbicularis oculi

45 Levator palpebrae, Orbicularis oculi 46 Orbicularis oculi

Table 2.1: Facial muscles used in Action Units.

have mentioned that there are more than 15 muscles involved in producing the 32 AUs. One anatomy

researcher noted that there are 36 named muscles of facial expression3. Sometimes there are more than

one muscles involved in producing a single AU, and sometimes the same AU is involved to produce a

number of different AUs. For example, in a genuine smile, there are typically six muscle types involved:

the zygomaticus major and minor, the orbicularis oculi, the levator labii superioris, the levator anguli

oris, and the risorius4. This however, would be coded only as AU12 + AU6 and depending on the

strength of the smile, some of these muscles might not be used after all. Thus, although FACS is

based on muscle activations, there is no one-to-one mapping of facial muscle actions to facial action

units. This is not a problem however, as it still describes all the atomic visible facial actions.

Table 2.1 gives an overview of what muscles are involved in each AU.

3Muscles to smile, muscles to frown, http://anatomynotes.blogspot.com/2006/01/muscles-to-smile-muscles-to-
frown.html, Date of access: July 27 2007

4Does it take fewer muscles to smile than it does to frown?, http://www.straightdope.com/columns/040116.html,
Date of access: July 27, 2007
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AU1 Raised inner eyebrow AU2 Raised outer eyebrow

AU4 Eyebrows lowerered and
drawn together

AU5 Raised upper eyelid

AU6 Raised cheek, compressed
eyelids

AU7 Tightened eyelids

AU43 Eyes closed AU45 Blink

AU46 Wink

Table 2.2: Upper facial Action Units.

AU8 Lips towards each other AU10 Raised upper lip

AU11 Deepened nasolabial fur-
row

AU12 Lip corners pulled up

AU13 Lip corners pulled sharply
up

AU14 Dimpler - mouth corneres
pulled inwards

AU15 Lip corners depressed AU16 Lower lip depressed

AU17 Chin raised AU18 Puckered lips

AU20 Mouth stretched horizon-
tally

AU22 Lip funneled and protruted

AU23 Lips tightened AU24 Lips pressed

AU25 Lips parted AU26 Jaw dropped

AU27 Mouth stretched open AU28 Lips sucked into the mouth

Table 2.3: Lower facial Action Units.

AU9 Nose wrinkler AU21 Neck thightened

AU31 Jaw clenched AU38 Nostril wings flared out
(left is neutral, right active)

AU39 Nostril wings compressed
(left is neutral, right active)

Table 2.4: Action Units belonging to neither the upper nor the lower facial area.
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FACS 2nd edition vs. 1st edition

The theory for FACS was published in 1976 [Ekman and Friesen, 1976] by Paul Ekman and Wallace V.

Friesen and the original FACS manual was published shortly after in 1978 [Ekman and Friesen, 1978].

While using the system for several years in their lab and training new FACS coders, they updated the

rules and definitions of the system. At first the changes were handed out to the new FACS coders in

the form of an addendum. However, as changes became more structural, a new version of FACS was

needed.

In 2002, a new version of FACS [Ekman et al., 2002] was finally published, this time with a third

author, Joseph Hager. Most co-occurrence rules were removed5, a number of AUs were made redun-

dant, minimum requirements were eliminated, and a novel intensity scoring definition was introduced.

Unfortunately, the authors decided not to rename the system. It is still simply known as FACS, not as

‘FACS2’, ‘FACS 2002 revision’ or ‘FACS version 2’. The lack of a means to distinguish the 1978 and

the 2002 versions by nomenclature has lead to confusion in the facial expression community. Some

papers mention that there are 46 AUs, others mention 32. Some allow scoring of AU27 and AU25

occurring together (possible in the new version), others don’t. In this thesis, we will adhere to the

2002 version of FACS, and, where a distinction between the versions is needed, we will refer to them

as FACS1 and FACS2. For clarity, the changes between FACS1 and FACS2 are listed below:

• The AUs AU41 (drooped eyelid), AU42 (slit eyes), and AU44 (squinted eyes) are re-assigned to

intensities of AU43 (eyes closed).

• The minimal requirements (intensity threshold for scoring) have been removed.

• A five-point intensity scale for every AU has been introduced.

• Co-occurrence rules have been eliminated.

2.1.5 MPEG-4

MPEG-4 is a multimedia compression standard that is capable of encoding each of the objects in a

scene separately. It has a special model for encoding faces and facial expressions. The neutral face is

5Co-occurrence rules indicated that the scoring of certain AUs would disallow scoring of certain other AUs, even if
their associated muscles were contracted. An example is AU27 (jaw stretched vertically) negating the scoring of AU25
if the co-occurrence rules were to be used.
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specified by a 3D face model defined by the face definition parameters (FDP) and the expression on

the face is described by facial animation parameters (FAP). See [Tekalp and Ostermann, 2000] for a

description of face modelling in MPEG-4.

The MPEG-4 standard leaves a lot of the definition details of the FDP and FAPs to the designers of

FERS. The facial mesh of the neutral face is made up from 84 well-defined facial feature points and

there are 66 low-level FAPs. However, the FAPs have simple geometric definitions, such as ’Vertical

displacement of midpoint between left corner and middle of top inner lip’ for FAP-8. But the FAP-

definitions describe displacements in one dimension and the designers of the FERS should work out

how a single multi-dimensional motion of facial points is translated to a combination of FAPs.

The designers of MPEG-4 claim that the FAPs are based on muscle activations. However, their relation

to facial muscle activations is a lot looser then the relationship between FACS and muscle activations.

A single muscle action will commonly trigger many FAPs. For instance, in a smile (AU12), both FAPs

that describe the left and right corner of the mouth will be triggered, and for both mouth corners a

separate FAP will describe horizontal and vertical motion. Another issue is that the MPEG-4 FAPs

can only encode displacements of visible facial feature points. Facial expressions that only deform the

shape of the skin without moving any facial feature points (e.g. dimplers or deepening the nasolabial

furrow), cannot be encoded. So while FAPs are indeed related to the facial muscles that underly facial

expression, we definitely don’t have a one-to-one mapping between FAPs and facial muscle actions.

The MPEG-4 FDP/FAP are created with the purpose of driving virtual animated faces. Its encoding

is tailored towards computer graphics designers, and as such it is too detailed for a FERS. This

unnecessarily complex encoding combined with the inability to describe a number of facial actions

which induce changes in facial texture rather than displacements of facial points, made us decide not

to use this facial action coding system.

2.2 Automatic Facial Expression Analysis

Automatic facial expression analysis has been an active research area in the fields of computer vision

and pattern recognition since 1978 [Suwa et al., 1978]. In 1992, Samal and Iyengard gave an overview

of the early work in this field [Samal and Iyengard, 1992]. Since 1978, the focus of attention has shifted

a couple of times. First attention shifted from the analysis of still images to analysis of face video.
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Later some researchers moved away from detecting a small number of prototypic expressions, such

as emotions, to the detection of atomic facial actions; either FACS AUs or MPEG-4 FAPs. Recently

the focus has shifted to two new aspects of facial expression analysis: the analysis of spontaneously

displayed expressions and the analysis of the temporal dynamics of facial expressions. Indeed, the

proposed systems in this thesis were specifically designed to address the issue of facial expression

temporal dynamics and the system has been applied to spontaneous facial expression data repeatedly

(see chapter 9).

As noted above in section 2.1, the two main streams in the current research on automatic analy-

sis of facial expressions consider facial affect (emotion) detection and facial muscle action detection

[Pantic and Rothkrantz, 2000, Pantic and Rothkrantz, 2003, Tian et al., 2005]. These streams stem

directly from the two major approaches to facial expression measurement in psychological research

[Cohn, 2006]: message and sign judgement.

Most automatic facial expression analysis systems developed so far are to be considered message

judgement systems. They target human facial affect analysis and attempt to recognise a small set

of prototypical emotional facial expressions like happiness and anger [Pantic and Rothkrantz, 2000,

Pantic and Rothkrantz, 2003, Tian et al., 2005]. Even though automatic recognition of the six ba-

sic emotions from face images and image sequences recorded under controlled conditions is consid-

ered largely solved, reports on novel approaches are still being published even to this date (e.g.,

[Anderson and McOwan, 2006, Chang et al., 2006, Guo and Dyer, 2005, Zhang and Ji, 2005]). Ex-

ceptions from this overall state of the art in machine analysis of human facial affect include few ten-

tative efforts to detect cognitive and psychological states like interest [Kaliouby and Robinson, 2004],

pain [Bartlett et al., 2006], and fatigue [Gu and Ji, 2005].

While message judgement studies distinguish only a very limited number of facial expressions, human

experts can manually code nearly any anatomically possible facial expression using FACS (see sec-

tion 2.1.4). This is achieved by decomposing an expression into the specific AUs and their temporal

segments. As AUs are independent of any (cultural) interpretation, they can in turn be used for any

higher order decision making process, including the recognition of basic emotions [Ekman et al., 2002],

cognitive states like (dis)agreement and puzzlement [Cunningham et al., 2004], psychological states

like pain [de C. Williams, 2002], and social signals like emblems (i.e., culture-specific interactive sig-

nals like wink, coded as left or right AU46), regulators (i.e., conversational mediators like the exchange

of a look, coded by FACS eye descriptor codes for eye position), and illustrators (i.e., cues accompa-
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nying speech like raising of the eyebrows, coded as AU1+AU2) [Ekman and Friesen, 1969].

Hence, AUs are extremely suitable to be used as mid-level parameters in an automatic facial behaviour

analysis system. They reduce the dimensionality of the problem (a few thousand anatomically possible

facial expressions [Cohn and Ekman, 2005] can be represented as combinations of about 60 AUs and

Action Descriptors). This representation in AUs can in turn be mapped to any higher order facial

expression representation.

It is not surprising, therefore, that automatic AU coding in face images and face image sequences

attracted the interest of computer vision researchers. Historically, the first attempts to encode AUs

in images of faces in an automatic way were reported by Bartlett et al. [Bartlett et al., 1999], Lien et

al. [Lien et al., 1998], and Pantic et al. [Pantic et al., 1998]. These three research groups are still the

forerunners in this research field. Two works that could perhaps be regarded as the most influential and

successful early works on automatic AU recognition were those by Bartlett et al. [Bartlett et al., 2004]

and Tian et al. [Tian et al., 2001]. The work of Bartlett et al. is purely appearance-based. It uses

Haar features and boosting techniques to locate the face in an image. The detected face region is then

passed through a bank of Gabor wavelet filters. The responses to these filers are fed to a GentleBoost

algorithm to select the most important features, which are subsequently used to train Support Vector

Machines. The work of Tian et al. is discussed in section 2.2.1 below.

The focus of the research efforts in the field was first on automatic recognition of AUs in either static

face images or face image sequences displaying facial expressions produced on command. Several

prototype systems were reported that can recognise deliberately produced AUs in either (near-)frontal

view [Bartlett et al., 1999, Pantic and Rothkrantz, 2004, Tian et al., 2001] or profile view face images

[Pantic and Patras, 2006, Pantic and Rothkrantz, 2004]. Most of these systems employ expert rules

and eager learning methods such as neural networks and are either feature-based (i.e., use geometric

features like facial points or shapes of facial components) or appearance-based (i.e., use texture of the

facial skin including wrinkles and furrows).

One of the main critics that these works received from both cognitive and computer scientists is

that the methods are not applicable in real-life situations where subtle changes in facial expression

rather than exaggerated AU activations (typical for deliberately displayed facial expressions) typify

the displayed facial behaviour. Hence, the focus of the research in the field started to shift to automatic

AU recognition in spontaneous facial expressions (produced in a reflex-like manner).
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Only recently, a few works have been reported on machine analysis of AUs in spontaneous facial

expression data [Bartlett et al., 2006, Cohn et al., 2004b, Valstar et al., 2006]. These methods employ

probabilistic, statistical, and ensemble learning techniques, which seem to be particularly suitable for

automatic AU recognition from face image sequences [Bartlett et al., 2006, Tian et al., 2005] and are

either feature- or appearance-based.

The configuration of facial expressions (either in terms of activated AUs constituting the observed

expression or otherwise) has been the main focus of the research efforts in the field. However, both

the configuration and the temporal dynamics of facial expressions (e.g., the timing and the duration

of various AUs) are important for interpretation of human facial behaviour. In fact, the body of

research in cognitive sciences which argues that the dynamics of facial expressions are crucial for

the interpretation of the observed behaviour, is ever growing [Ambadar et al., 2005, Bassili, 1978,

Russell and Fernandez-Dols, 1997].

A complete overview of all the related work published in the field of automatic facial expression analysis

would comprise a thesis of its own. Therefore we will only provide a discussion of the most important

works with respect to the system described in this thesis. We will focus first on the automatic

recognition of Action Units using geometric-feature based techniques in section 2.2.1. Next we will

discuss works that specifically address the issue of facial action temporal dynamics in section 2.2.2.

Because the small amount of work published in the area of facial action temporal dynamics, we will

not limit ourselves to works that address AU temporal dynamics analysis only. Works that deal with

spontaneous facial expressions and FACS are treated separately in chapter 9, in which we will also

present two studies where the system proposed in this thesis is applied to spontaneous facial expression

data.

2.2.1 Geometric feature based FACS detectors

Geometric facial features describe the shapes and locations of facial components such as the eyebrows,

eyes, nose, mouth and chin. Based on these facial components, which for example could be described

by facial points, feature vectors that represent the face geometry are computed. In the simplest case

these would be the locations and shape of the facial components, but more elaborate features, e.g. a

parameterisation of the path that a facial point follows over time, could be contrived as well.

The vast majority of efforts to automatically detect AUs have used appearance-based features. It
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has even been claimed that appearance-based methods outperform those based on geometric features

[Bartlett et al., 1999]. Yet the very first studies on automatic facial action recognition proposed ge-

ometric feature-based approaches [Parke, 1974, Platt and Badler, 1981, Suwa et al., 1978]. Also, in

this thesis we will show that appearance-based approaches do not always outperform feature-based

approaches (see chapter 6.

The first geometric feature based approach was proposed in 1978 by Suwa et al. [Suwa et al., 1978].

They proposed a system that attempts to automatically recognise facial expressions by analysing the

positions of 20 characteristic facial points. The points were marked on the face with markers and after

filming the coordinates were manually retrieved from the recorded frames. It is noteworthy that they

already acknowledged the fact that they had to deal with 3D rigid head motion in order to capture

naturalistic expressions and they already proposed a method to separate rigid from non-rigid facial

point motion. They modeled expressions in terms of a small number of mid-level parameters which

had a close relation to muscle activations, yet they stopped short of expressing them in terms of AUs.

However, as FACS has only been introduced in 1976 to an audience of cognitive scientists, it is not

surprising that Suwa et al. did not use FACS for their research. On the contrary, it is reassuring to see

that they suggested to model muscle actions, independently of Ekman’s findings. In their experiments

they recognised 5 different emotional activities which were shown by experienced actors on command.

They used a modified k-Nearest Neighbour approach, using weights relative to the frequency of the

classes.

Terzopoulos and Waters [Terzopoulos and Waters, 1990] presented a system that both synthesised

and analysed a face. They used deformable contours (snakes) to track the rigid motion of the head

and the non-rigid motions of the eyebrows, nasal furrows, mouth, and jaw in the image plane. The

method employed a physically-based synthetic tissue model that models the effects of muscle actions

as operations on a lattice of point masses connected by nonlinear elastic springs. As the goal of this

paper was only to drive the graphical face model, no emotions or facial muscles were explicitly detected,

although the system could presumably be extended to accommodate this. The paper describes a test

on a single person performing a single expression while wearing heavy makeup on all the facial features

to be tracked. The fact that this system requires that the facial features be highlighted with makeup

for successful tracking is a severe limitation. Also, the deformable contours (i.e. snakes) need to be

initialised manually in the first frame. The authors note that the 3D geometry of the face model may

differ significantly from that of the subject, which could cause difficulty tracking faces whose faces are
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very dissimilar to the face model.

Essa and Pentland described in 1997 a system that uses optical flow tracking to fit a face-model mesh

to the face [Essa and Pentland, 1997], similar to the approach of Terzopoulos and Waters. The face-

model incorporates the modelling of anatomically-based muscles and the elastic nature of facial skin,

which have time dependent states and state evolution properties. The 3D mesh is automatically fitted

to the face in the first frame of an image sequence and the shape model is updated in each frame using

optical flow. The authors proposed a new facial action model based on FACS, called FACS+. They

fail to accurately describe what this extended model entails, and exactly how it differs from FACS.

The authors never continued their research into this enhanced FACS either. Apart from a couple of

pretty pictures and a qualitative discussion of the system, no performance measures were provided.

This is the first paper that utilised optical flow (see [Lucas and Kanade, 1981] for details on the Lucas-

Kanade optical flow retrieval method) in a system that aims to detect AUs. Optical flow is a concept

which approximates the motion of objects within a visual representation. The difference is that true

physical motion in the world of objects is not always reflected in gray value or colour changes in the

corresponding images, and gray value changes are not always due to motion of objects. When used as

the driving force for object tracking, such as Essa and Pentland proposed, this will lead to a type of

error commonly called drift. This type of error occurs for any inference where the state at time t is

a result of the optical flow analysed over a long period of time. We therefore find that optical flow is

not a useful tool for long-term analysis and should only be used for (semi) instantaneous reasoning.

Lien et al. compared in 1998 a geometry based approach with two appearance based approaches

[Lien et al., 1998]. To detect three AUs, the feature based approach tracked 8 facial feature points

using optical flow. The first appearance based techniques used a PCA decomposition of the optical

flow field on the forehead. The second appearance based technique extracted oriented edges from the

forehead using a kernel-based edge detector. On 75 videos taken from the Cohn-Kanade database, the

geometric feature based technique achieved an 85% classification rate, the optical flow field approach

a 93% classification rate and the oriented edge detection technique an 85% classification rate. All

techniques used Hidden Markov Models as classifiers. This system suffers from a number of drawbacks.

It needs to be initialised manually, that is, the facial points needed to be manually localised by the

operator. It has no 3D model of the face, instead assuming that the face is a plane and that affine

transformations would suffice to register the face. A separate classifier was trained for each signal and

for each AU combination. As the number of AU combinations lies in the thousands, this approach is
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not feasible. Also, the three information signals were not fused in any way, which could have led to

significant improvements.

The same lab presented in 2001 a highly successful improvement of this system [Tian et al., 2001].

The manual initialisation remains largely the same, although they introduced a face detector which

made it possible to give rough initial estimates of the facial point positions. The proposed method

detects AUs separately for the lower face (6 AUs detected) and upper face (10 AUs detected), using

Artificial Neural Networks as classifiers. Lip contours, brows, eyelids and 6 points on top of the

cheeks are tracked using a variety of highly customised trackers, employing colour histograms, optical

flow motion information and shape constraints. Different facial features are tracked with differently

operating trackers. The features that function as input to the Neural Networks are expert-defined mid-

level parameters computed from the tracked facial points, such as the distance between the eyelids,

plus edge information taken from the regions next to the eyes, on the bridge of the nose and next to the

nose (the nasolabial furrows). Surprisingly, the authors chose not to use the optical flow field anymore,

even though they reported that this feature was the most successful in their previous study. The work

reported an unprecedented thorough performance evaluation. The system was tested on over 230

image sequences taken from the Ekman-Hager database, and separately on over 200 examples taken

from the Cohn-Kanade database. As a third test, to evaluate how well the system could generalise to

completely novel data, they trained their system on one database and tested it on the other. For this

test they achieved an incredibly high 93% classification rate.

Gokturk and colleagues proposed a method that simultaneously tracks the 3D head pose and face

shape [Gokturk et al., 2002]. A 3D shape model consisting of 19 points is initialised manually in the

first frame of an image sequence and tracked using optical flow. The system utilises Support Vector

Machines (SVMs) to recognise 5 distinct facial actions: the neutral expression, opening/closing of the

mouth, a smile and raising the eyebrows. They reported a mean 91% classification accuracy, however,

the system was tested on data from only three persons. The data of two of these subjects were used

to both train the classifier as well as test it, making the results extremely subject dependent. Overall,

the results are inadequate to judge the true performance of this system.

Zhang and Ji [Zhang and Ji, 2005] proposed a hybrid approach that uses both appearance and geo-

metric features. They use an active infrared illuminator, making use of the red-eye effect to detect

the pupils. According to the paper, they use the locations of the pupils together with anthropometric

statistics to localise the regions of interest in which the facial features can be found. Next they rep-
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resent the image by passing it through a filterbank of 18 Gabor filters. Unfortunately that is all they

say about the way the facial points are detected, leaving an important part of their work undiscussed.

These facial points are tracked in the wavelet domain using Kalman filtering. As appearance features

they use the classical Canny edge detection method, applied in a number of regions where furrows are

to be expected6. Why the authors take the extra step of using the Canny method for oriented edge

detection, instead of re-using the Gabor filters, which can be used as oriented edge detectors, remains

unexplained.

The authors propose expert rules for the relations between AUs and the geometric properties of the

tracked points, claiming that expert rules are more robust than machine learning methods. This

claim is not backed up by qualitative nor by quantitative results. The method features a complex

temporal dynamic probabilistic classification strategy based on Dynamic Bayesian Networks. From the

geometric and appearance based features, they first model the probability that an AU is activated.

In a layer between AUs and emotions, they add nodes that group AUs in two: the first group of

AUs are considered ‘typical’ for that emotion, while the second group of ‘auxiliary’ AUs are less

important, according to an expert’s opinion. While the authors claim to address many open issues

of facial expression analysis with this complex system, many assumptions and system design choices

are ill-chosen in my opinion. It comes as no surprise to me that the authors provide no qualitative

performance results of their AU and emotion detection system, other than the emotion detection on a

single image sequence containing each emotion exactly once, one after the other, separated by neutral

expressions.

Kotsia and Pitas recently proposed to use a system very similar to the one presented in this thesis

[Kotsia and Pitas, 2007]. They manually fitted a candide face mesh consisting of 79 nodes to the first

frame. The authors noted that usually manually specifying the positions of 5-8 nodes was enough

for a good fit of the facial mesh. This mesh is subsequently tracked through the image sequence

using Kanade-Lucas-Tomasi tracking [Lucas and Kanade, 1981], and node-displacement features are

computed. SVMs were used to recognise emotions and 17 AUs. On the Cohn-Kanade database they

achieved a classification rate of 93.5%.

6Furrows in the face due to facial expression can be expected outside the eyes (crow-feet wrinkles), on the bridge of
the nose, between and above the eyebrows, left and right of the nose, on the chin-boss, and left and right of the mouth
corners
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2.2.2 Temporal dynamics analysis

Facial expression temporal dynamics are essential for categorisation of complex psychological states

like various types of pain and mood [de C. Williams, 2002]. They are also the key parameter in

differentiation between posed and spontaneous facial expressions [Ekman and Rosenberg, 2005]. For

instance, it has been shown that spontaneous smiles, in contrast to posed smiles (e.g. a polite smile),

are slow in onset, can have multiple AU12 apices (multiple rises of the mouth corners), and are

accompanied by other AUs that appear either simultaneously with AU12 or follow AU12 withing 1s

(see section 9.3, [Cohn and Schmidt, 2004]). Similarly, it has been shown that the difference between

spontaneous and deliberately displayed brow actions (AU1, AU2, AU4) lies in the duration and the

speed of onset and offset of the actions and in the order and the timing of the occurrences of facial

actions (see section 9.2).

In spite of these findings, the vast majority of the past work in the field does not take dynamics of

facial expressions into account when analysing the shown facial behaviour. Some of the past work has

used aspects of temporal dynamics of facial expression such as the speed of a facial point displacement

or the persistence of facial parameters over time. However, this was either done to increase the

performance of the accuracy with which static aspects of facial expressions were detected (i.e., AU

activation) [Gralewski et al., 2006, Tong et al., 2006, Zhang and Ji, 2005] or in order to report on the

intensity of (a component of) the shown facial expression [Littlewort et al., 2006, Zhang and Ji, 2005].

Hardly ever were the properties of facial expressions’ temporal dynamics explicitly analysed.

Exceptions from this overall state of the art in the field include two studies on automatic segmentation

of AU activation into temporal segments (neutral, onset, apex, offset) that were made in parallel with

the work presented in this thesis, in the same lab. Temporal segments were recognised in frontal-

[Pantic and Patras, 2005] and profile-view [Pantic and Patras, 2006] face videos. Both of these works

employ geometric features and rule-based reasoning to encode AUs and their temporal segments.

Bartlett et al. [Bartlett et al., 2003] report that, although their SVM classifiers were not trained to

measure the amount of eye opening, they learned this as an emergent property. What they reported

was that the output of a SVM is an indication of the strength of a facial action. This, however, is not

completely true. An SVM learns a decision boundary based on data elements close to data elements of

the opposite class. Essentially, it learns the decision function based on the atypical examples, rather

than the typical examples. Because of this, it is not correct to assume that having a greater distance
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to the decision boundary means that a test example is more typical for that class, or, as the authors

put it, has a higher intensity. That being said, the output of the classifiers does appear to be a smooth

function over time. However, the output has many peaks (more than there should be in the expression

shown) and the graphs shown do not seem to correspond with actual temporal segments of facial

actions. The authors do not report on any qualitative or quantitative fitness of the SVM output with

the facial action intensity.

Apart from reporting on the SVM outputs, the authors use Hidden Markov Models (HMMs) to increase

the robustness of their AU activation detection system. The HMMs learn the temporal persistence

of facial actions and therefore increase classification accuracy. The system was able to detect three

AU combinations: AU1+AU2 (brow raiser), AU4 (brow lowerer) and AU45 (a blink). The brow

action classifier was implemented as a forced-choice classifier with three classes (neutral, AU4 and

AU1+AU2) and achieved a reported 75% classification rate. The blink detector was implemented as

a binary detection problem with a reported performance of 98.2% classification rate.

A structured approach to dealing with the particularities of the temporal dynamics of facial expressions

was proposed by El Kaliouby and Robinson [Kaliouby and Robinson, 2004]. The authors point out

that there are different levels of temporal abstraction to facial expressions. They model three levels

of abstraction: at the highest level there are mental states which typically last between 6-8 seconds,

then there are facial displays which last up to 2 seconds, and at the lowest level there are the action

units that last tenths of seconds. This last statement seems a little arbitrary to me. They do not

mention what they base this duration on and many AU activations present in publicly available facial

expression databases last several seconds (see chapter 3 for an overview of facial expression databases).

Still, the approach seems logical.

The proposed system employs Dynamic Bayesian Networks, of which HMMs are a subclass, to model

both the evolution of time and the relationships between the three abstraction levels. Overall, the

system seems a good approach to complex facial action understanding. Yet their system is still only an

activation detection system, and it does not gather any temporal dynamics information which could

be used by subsequent facial analysis systems. Also, the systems used to initialise the locations of

facial points, track the points in subsequent frames and compute features for facial expression analysis

are not entirely state-of-the-art. They employ techniques such as colour histograms, motion flow and

a number of head pose estimation techniques that seem incredibly sensitive to noise.
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The system proposed by Zhang and Ji [Zhang and Ji, 2005] was already mentioned in section 2.2.1

above. Thus let us describe the temporal dynamic aspects of that system here. A Bayesian network

is learned to recognise an emotion at each moment in time. At the lowest level there is a layer of

visual cues such as whether the mouth opening has exceeded a certain threshold or not. These are

connected to a layer of nodes representing active AUs. These are in turn connected to a layer of

emotion classes. At this highest level an HMM connects the emotion predictions through time. This

allows for smooth transitions from one emotion to another, e.g. from surprise to happiness, or from

an emotive expression to neutral. This system achieves two (related) objectives: it increases the

activation detection performance of emotions, and it models which emotions are likely to follow after

each other. A follow-up paper was presented by the same group in which they use the same approach,

but now with the aim to recognise the AU activations instead of emotions [Tong et al., 2007]. Thus,

in the top level, not emotions but AU activations are connected by the HMMs.

The title of the paper by Littlewort et al. [Littlewort et al., 2006], ‘Dynamics of facial expression

extracted automatically from video’ sounds very promising, but it is actually the least interesting of

the papers described here, with regard to facial dynamics. For recognition of the 6 Ekmanian emotions

they employ the same Gabor filter features as presented in their previous work [Bartlett et al., 2003],

which themselves can not encode any temporal dynamics information. They experiment with a number

of classifiers, none of which can model time. The HMM, employed in the authors’ previous work, was

not one of the evaluated classifiers, while that classifier is capable of modelling temporal dynamics.

Basically, the dynamics part of their title is justified by their observation that the output of their SVMs

is a smooth function over time. This is the same claim as was made earlier in [Bartlett et al., 2003].

Again, this statement is made after human visual inspection of the SVM output, no quantitative

evaluation of this claim is provided.

The first effort to explicitly analyse the characteristics of facial temporal dynamics themselves was

presented by Pantic and Patras in 2005 [Pantic and Patras, 2005], with a follow-up paper that em-

ployed the same techniques yet applied to profile-view images in 2006 [Pantic and Patras, 2006]. In

these works, the authors propose to segment a facial action in temporal phases. A facial action can

be divided into four temporal phases or segments: the onset, apex, offset and neutral phase of a facial

action. For an in-depth discussion of this principle the reader is referred to section 7. The system

proposed by Pantic and Patras was developed in parallel with the system described in this thesis. It

employs the same particle-based facial point tracker as described in section 5.1. Based on the tracked
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points data, three feature functions are computed; the deviation of a point’s x-position relative to

a neutral position, its y-value deviation relative to a neutral position, and for combinations of two

points at a time whether the distance between the points has increased, decreased or remained the

same. The functions have a discrete output: for the first function the output is either {left, no motion,

right}, for the second {up, no motion, down} and for the third {increase, no motion, decrease}. Both

functions use a threshold that interestingly has the same value for all functions, for all AUs to be

recognised. The same threshold value is used both for AU activation detection (i.e. the detection of

the presence of an AU, regardless of its temporal phase) as for temporal segment detection.

An interesting observation is that all systems mentioned above rely purely on the temporal modelling

powers of the classifiers. None particularly attempt to capture information about the temporal dy-

namics in the description of their features. The most powerful temporal dynamics descriptors used

are the difference of a parameter value compared to its value at an earlier, often neutral state of the

face. Relying on the classifiers only seems a naive approach, as they can only perform so well given

the data they are presented with. Designing complex multi-stage classifiers that capture temporal

dynamics is an active and promising research area. However, it seems strange to focus solely on the

classifier part to model the temporal dynamics while it is relatively easy to encode information on the

temporal dynamics of facial actions directly in the features.



Chapter 3

Facial expression databases

To be able to evaluate the geometric-feature based AU analysis system that we will propose in this

thesis, we need a suitable set of data. We have chosen two databases to use in our studies. In this

chapter we will outline our reasons for this choice. We will first give an overview of the existing facial

expression databases. We will then give a detailed description of the two databases that are most

appropriate to evaluate our methods. The first database we chose is the DFAT-504 Cohn-Kanade

database [Kanade et al., 2000]. We will show that the DFAT-504 Cohn-Kanade database lacks a

number of properties needed to evaluate all the aspects of our system and therefore we introduce

in this chapter the MMI-Facial Expression Database [Pantic et al., 2005b], which was purposefully

created to evaluate our proposed facial expression analysis system.

A second reason to create the MMI-Facial Expression Database is to provide the facial expression

recognition community with a publicly available database, so that novel facial expression recognition

techniques can be tested on a large, common set of data. It has been noted in the literature that

to develop, evaluate and compare automatic facial expression recognition systems, large collections

of training and test data are needed [Kanade et al., 2000, Pantic and Rothkrantz, 2003]. The estab-

lishment of an easily accessible, comprehensive, database of facial expression exemplars has become

an acute problem that needs to be resolved if fruitful avenues for new research in automatic facial

expression analysis are to be opened.

In this chapter we will discuss the desired characteristics of a facial expression database that is to be

used as a common resource for scientists in the field. We will then give an overview of existing facial

expression databases. We will give an in-depth evaluation of the first database we use to evaluate our

38



3.1. Facial expression database characteristics 39

systems on, the DFAT-504 Cohn-Kanade database. This is the most used database for automatic facial

expression recognition evaluation to date. We will explain why it lacks some of the currently desired

properties of a benchmark database. Finally, we will present the MMI-Facial Expression database,

which was developed to facilitate the current needs of facial expression analysis researchers.

3.1 Facial expression database characteristics

Below we will discuss what are the important characteristics of a facial expression database. The

quality of a comprehensive facial expression database depends primarily on the data contained therein.

We will then provide an overview of the existing facial expression databases.

3.1.1 Desirable data characteristics

Static images and videos

While videos are necessary for studying temporal dynamics of facial behaviour, static images can be

used to obtain information on the configuration of facial expressions [Pantic and Rothkrantz, 2003]

which is essential, in turn, for inferring the related meaning of an expression (e.g. in terms of emotions).

Of course one could argue that it is possible to extract still images from videos. However, because

of the limitations of current capture and storage devices, videos are often recorded at relatively low

spatial resolution. This puts limitations on systems that process videos. As static images only record

one moment in time, their storage and capture requirements are less constricting. This in turn allows

a facial expression database to include a large number of these high-resolution still images, which

can be used to perform studies that require a higher detail of the facial features. Therefore a good

benchmark database should include both high resolution static images and videos of faces showing

prototypic expressions of emotion and various expressions of single AU and multiple AU activation.

Data descriptors

A fundamental factor in designing a benchmark database is the metadata that are to be associated

with each database object. These metadata provide a description of the characteristics of the data

objects in a human readable form, which makes it possible to discriminate between groups of data.
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These data could be used as the ground truth in the evaluation of the performance of automated facial

expression analysers or for the selection of a subset of data with specific properties.

For general relevance, the imagery should be scored in terms of AUs and their temporal segments

since FACS provides an objective and comprehensive language for describing facial expressions and

a general representation that can be used in many applications (see section 2.1). However, as many

researchers still propose systems to distinguish the six basic emotions, and the interpretation of the

meaning of the expression is arguably ultimately the goal of any facial expression recognition system,

such information should be available as well. However, as this interpretation label is highly subjective,

it might very well be that an expression is described using multiple, possibly many, different labels.

In general, there should be a facial expression interpretation label (e.g. basic emotion or another

description of an expression such as ‘boredom’ or ‘sleepy’) as well as FACS coding. Note that it takes

more than one hour to manually score 100 still images or a minute of videotape in terms of AUs

and their temporal segments [Ekman et al., 2002]. Hence, obtaining large collections of AU-coded

facial-expression data is extremely tedious and expensive, and, in turn, difficult to achieve.

Other metadata to include are information about the gender, age and ethnicity of the subjects, whether

there are any occlusions present and information about the context in which these recordings were made

such as the utilised stimuli, the environment in which the recordings were made, the presence of other

people, etc. [Pantic and Bartlett, 2007]. For increased flexibility, evolution of the data description

and ease of use, metadata is provided to the user in XML format.

Individual differences between subjects

A very important variable of the benchmark database is the variety of the subjects included. Features

such as hair style, hair colour, glasses or skin colour could strongly affect the performance of the

facial expression analysis. Face shape, texture, colour, and facial and scalp hair vary with sex, ethnic

background, and age [Farkas and Munro, 1987]. Beards, glasses, make-up or jeweller may obscure,

occlude or enhance facial features. In order to develop algorithms that are robust to individual

differences in facial features and behaviour, it is essential to include a large sample of subjects who

vary relative to the values of the above-mentioned parameters.
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Variable head pose

One of the major obstacles encountered at this moment by researchers in the field is the variability

in the head pose in an initial image as well as over time. To study methods to tackle this problem,

a comprehensive facial expression database should contain a large number of videos in which the

head pose varies over time, and/or which are recorded by multiple cameras from different angles.

This way, relations between camera viewing angles, head pose, facial features and facial expression

can be learned. The extremes of the camera viewing angle are the frontal view (camera right in

front of a person), the profile view (camera to the left or right of a person), a view from a very low

camera (possibly meters lower than the observed face) and the helicopter view (camera directly above

a person). The use for the latter two views is primarily for applications such as surveillance, where a

(mobile) camera might be positioned at a different height than the observed face is.

There are other reasons to use multiple cameras when recording the face. For instance it would be

easier to reconstruct a 3-D model of the face with such data [Park and Jain, 2006]. Also, symmetry

properties of a facial expression could be studied in greater detail, which could reveal the intent with

which the expression was made [Ekman and Friesen, 1974], (see chapter 9).

Posed and spontaneous actions

Facial expressions are either illicited on purpose as a voluntary action or unconsciously, that is, spon-

taneously. These two types of expression vary widely in terms of configuration and temporal dynamics

(see chapter 9 for a thorough discussion on this topic). A very important issue for the creation of a

database is that it should consist of both deliberate (posed), actions performed on request as well as

spontaneous actions that are not under volitional control of the subject.

Volitional facial movements originate in the motor cortex, whereas the involuntary facial actions,

originate in the sub-cortical areas of the brain [Ekman and Friesen, 1974]). Therefore, some facial

movements might be easier to make deliberately compared to others. In particular, while few people

are able to perform certain facial actions voluntarily (e.g., AU2), many are able to perform these

actions spontaneously [Kanade et al., 2000]. This may make it hard to collect posed expression data

of all possible AUs. On the other hand some expressions such as fear or anger might prove very

difficult to illicit spontaneously from a subject without breaking ethical codes of conduct.
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Configurational and dynamic aspects

The dynamics and the configuration of a facial expression complement each other and are both nec-

essary in analysing a facial expression. Virtually all the existing facial expression analysers assume

that the input expressions are isolated or pre-segmented, showing a single temporal activation pattern

(neutral =⇒ onset =⇒ apex =⇒ offset) of either a single AU or an AU combination that begins and

ends with a neutral expression (see chapter 7 of this thesis). In reality, facial expressions do not nec-

essarily evolve with this particular sequence of temporal phases. Facial expressions are very complex

and the transition from an action or combination of actions to another might not follow this pattern

and might not involve an intermediate neutral state. Among other things, these temporal dynamics

are a key parameter in differentiating posed from spontaneous facial displays (see chapter 9).

Examples of both the neutral-expressive-neutral and the variable-expressive-variable behaviour should

be included in a good database in order to study the essential question of how to achieve parsing of the

stream of behaviour. Facial expression temporal dynamics form a critical factor in applications that

have to do with social behaviour, such as social inhibition, embarrassment, amusement and shame

[Pantic and Bartlett, 2007].

Facial expression intensity

Facial expressions vary in intensity. As defined by Pantic & Bartlett [Pantic and Bartlett, 2007]:

By intensity we mean the relative degree of change in facial expression as compared to

a relaxed, neutral facial expression. In the case of a smile, for example, the intensity of

the expression can be characterised as the degree of upward and outward movement of

the mouth corners, that is, as the degree of perceivable activity in the Zygomaticus Major

muscle (AU12) away from its resting, relaxed state.

It has been experimentally shown that the expression decoding accuracy and the perceived inten-

sity of the underlying affective state vary linearly with the physical intensity of the facial display

[Hess et al., 1997]. Hence, explicit analysis of expression intensity variation is very important for ac-

curate expression interpretation. It is also an important factor in distinguishing between spontaneous

and posed facial behaviour (see chapter 9). Hence, a comprehensive facial expression database should

contain examples with a wide range of intensities. How the intensities should be measured is an
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entirely different matter, but this need not be addressed when creating the database. An intensity

measure label could be added at any stage.

3.1.2 Data collection issues

Several technical considerations for the database should be resolved including field of sensing, spatial

resolution, frame rate, data formats, and compression methods. The choices should enable sharing the

data between different research communities all over the world, on any existing and (where possible)

future operating system. Database creators should try not to make any assumptions about how the

data will be used in the future by scientists; they should not throw away any information, even if they

deem that information not important at the time of recording. Any compression performed should

therefore be lossless. This severely limits the possibilities for data formats and compression techniques.

For the acquisition of posed actions, performed on request, the subjects should be either experts in

production of expressions (e.g., trained FACS coders or actors) or individuals being instructed by such

experts on how to perform the required facial expressions. Given the large number of expressions that

should be included into the database, provisions should be made for individual researchers to append

their own research material to the database. However, a secure handling of such additions has to be

facilitated.

3.1.3 Database accessibility and usability

Benchmark databases of facial expression exemplars could be valuable to hundreds of researchers in

various scientific areas if they would be easy to access and easy to use. It would be ideal to have a

relaxed level of security, which allows any user a quick, web-based access to the database and frees

administrators of time-consuming identity checks.

However, in this case, non-scientists such as journalists and hackers would be able to access the

database. If the database is likely to contain images that can be made available only to certain

authorised users (e.g., images of psychiatric patients), then a more comprehensive security strategy

should be used. For example, a Mandatory Multilevel Access Control model could be used in which

the users can get rights to use database objects at various security levels (e.g., confidential, for internal

use only, no security).
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Name No.
Subjects

No.
Videos

No.
Images

Available Web-based Searchable

Adult Attachment Interview
[Roisman et al., 2004]

64 64 0 No No No

AMI [McCowan et al., 2005] 12 265 0 Yes Yes No

AR
[Martinez and Benavente, 1998]

126 0 4000 Yes Yes No

AT&T (formerly ORL)
[Samaria and Harter, 1994]

30 0 400 No No No

Belfast Db
[Douglas-Cowie et al., 2003]

125 239 0 Yes No No

BU-3DFE [Yin et al., 2006] 100 2500 3D
models

Yes No No

CVL [Solina et al., 2003] 10 0 798 No No No

Cohn-Kanade
[Kanade et al., 2000]

97 488 0 Yes No No

FG-NET [Wallhoff, 2006] 18 399 0 Yes Yes No

JAFFE [J. et al., 1998] 10 0 219 Yes Yes No

MMI [Pantic et al., 2005b] 90 2363 740 Yes Yes Yes

PIE [Sim et al., 2003] 68 0 40000 Yes No No

RU-FACS [Bartlett et al., 2006] 100 100 0 No No No

SAL 2 10 hrs 0 Yes No No

UT Dallas [O’Toole et al., 2005] 284 800 0 Yes No Yes

Yale Face Db-part B
[Georghiades et al., 2001]

10 0 5850 Yes No No

Table 3.1: Existing facial expression databases

3.2 Overview of existing databases

There have been a number of databases created over the past few decades, none of which addresses

all of the above issues successfully. Tables 3.1 and 3.2 list a number of important efforts. In the

tables we have included information on 16 facial expression databases that have been used in the

literature on facial expression recognition. Only databases that are freely available to the research

community have been included. We have listed a number of characteristics that we deem important:

the number of subjects, videos and images contained in the database as well as whether the database

is publicly available (3.1). The requirement to be listed as being web-available is that the material

is downloadable and that there is a publicly available link to start the download (see column 6 in

table 3.1). So, if the website of a database would only provide some information about the database

and state that interested parties should contact one of the authors, this would not count as being

web-available.

The column on searchability lists whether means to search through the database’s content are readily

available. In other words, tools should be available that allow the user to fill in a number of criteria

and run the search for the user. This does not necessarily have to be integrated in an online web
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Name Expression description P/S Occlusions Views

Adult Attachment
Interview

FACS, 6 basic emotions, nega-
tive/positive affect

S None Frontal

AMI 1 basic emotion S Glasses Frontal to profile

AR 3 basic emotions P Glasses, scarf Frontal

AT&T 2 basic emotions P Glasses Frontal

Belfast Db Multiple emotive S Unknown Frontal

BU-3DFE 6 basic emotions P None Frontal, 45, -45

CVL smile/neutral P None Frontal, 2 profiles, 45, -45

Cohn-Kanade 6 basis emotions, FACS P None Frontal

FG-NET 6 basic emotions S None Frontal

JAFFE 6 basic emotions P None Frontal

MMI 6 basic emotions, FACS P,S Glasses, facial hair Frontal, profile

PIE smile/neutral/blink/talk P None 13 views

RU-FACS FACS S Unknown Frontal, 2 profiles

SAL FEEL-TRACE S Unknown Frontal

UT Dallas 6 basic emotions + puzzle-
ment/laughter/boredom/disbelief

P None Frontal

Yale Face Db-B 1 basic emotion P None 9 views

Table 3.2: Characteristics of facial expression databases

interface, but it should be integrated with the database.

Table 3.2 lists how the expressions are described, i.e. what the available metadata are such as whether

the data was posed (P) or spontaneous (S), what types of occlusions were present and from what

views the imagery was recorded.

The AMI database is actually much larger then listed in table 3.1. However, most of those data are

not annotated for facial expression at all. There is only annotation for the presence of laughters/smiles

of 265 videos. For that set of videos we have listed the information in table 3.1.

In the following sections, we will only discuss the most popular database: the Cohn-Kanade database

and the MMI-Facial Expression Database, the creation of which was a part of the work done for

this thesis. We do so because it is these two databases that we use in this thesis to evaluate our

techniques. The reader is referred to [Cowie et al., 2005, Gross, 2005, Zeng et al., 2008], in which

most of the databases listed above are analysed in great detail.

3.3 Cohn-Kanade database

The Cohn-Kanade DFAT-504 facial expression database was developed for research in recognition of

the six basic emotions and their corresponding AUs. The database contains 488 near frontal-view

videos of facial displays produced by 96 adults aged 18 to 50 years old. Of the subjects, 69% is female,
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81% is Caucasian, 13% African and 6% of the subjects are from other ethnic groups. The database

was made publicly available as a set of grey-scale image sequences, that start with a neutral expression

and end as soon as the peak expression (apex) is reached (i.e. not the entire apex phase is included).

The publicly available DFAT-504 database is a subset of about 2000 originally recorded videos. The

original videos, in colour and displaying the full neutral-expressive-neutral expression are still kept at

the authors’ lab, but are not publicly available.

This database is currently the most commonly used database for studies on automatic facial expression

analysis. All facial displays were made on command and the recordings were made under constant

lighting conditions. Two certified FACS coders provided AU coding for all videos. Inter-observer

agreement was expressed in terms of Cohens kappa coefficient, which is the proportion of agreement

above what would be expected to occur by chance. The mean kappa for inter-observer reliability was

0.82 for AUs at apex.

There are a number of reasons why the DFAT-504 database is not suitable for training or testing

algorithms that intend to address the current challenges of automatic facial expression recognition.

First of all, the variability of facial actions within the database is very low. Not only because the

database was recorded with the intent of recognising only the six basic emotions, but also because

most subjects depict the same emotion in the same way as the other subjects did. Of course the number

of ways in which the six basic emotions can be displayed is limited, yet the number of variations shown

in this database is even lower. This is probably because the certified FACS coders showed the subjects

how to do a typical expression of emotion, and the subjects mimicked that expression. The database

therefore does not contain all existing AUs. Also, there exists a high correlation between groups of

AUs, which would allow a system to recognise AUs by inference rather than based on observations

that are characteristic for the relevant AU only. It is therefore not a suitable source of data to train

a system to detect AUs in any real world applications other than basic emotion detection, as in those

situations we can expect all AUs to occur in all possible combinations.

Incomplete apex phases and unavailable apex-offset and offset-neutral transitions in the recordings

make this database unsuitable for training and testing systems capable of analysing the temporal

behaviour of facial expressions. This, in turn, renders the database useless if the goal of a system

is a more detailed analysis of a human’s facial actions. The database consists exclusively of posed

expressions, which do not represent all real-life facial actions. A separate database is needed to learn

the characteristics of spontaneous facial expressions.
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The videos in the database were recorded from a frontal-view of the face only and contains a negligible

amount of head motion. This does not reflect natural human behaviour and therefore the database

can not be used to train or test a system that is to function under conditions where the head pose

is unconstrained. As a last and final drawback, many recordings have a time-stamp overlayed at

the position of the chin, or on the position of the neck just below the chin, which makes it virtually

impossible to detect any actions that involve the chin boss or the jaw (e.g. the dropping of the jaw or

the sideways movement of the jaw).

3.4 MMI Facial expression database

The MMI-Facial Expression Database, from now on MMI database, has been developed to address

most (if not all) of the issues mentioned above. It contains more than 3000 samples of both static

images and image sequences of faces in frontal and in profile view displaying various facial expressions

of emotion, single AU activation, and multiple AU activation. It has been developed as a web-

based direct-manipulation application, allowing easy access and easy search of the available images

[Pantic et al., 2005b].

The properties of the database can be summarised in the following way:

Sensing : The static facial-expression images are all true colour (24-bit) images which, when digitised,

measure 720∗576 pixels. There are approximately 600 frontal and 140 dual-view static facial-expression

images (see Fig 3.1). Dual-view images combine frontal and profile view of the face, recorded using

a mirror. All video sequences have been recorded at a rate of 25 frames per second using a standard

PAL camera. There are approximately 335 frontal-view, 30 profile-view, and 2000 dual-view facial-

expression video sequences (see Fig. 3.2). The sequences are of variable length, lasting between 40

and 520 frames, picturing neutral-expressive-neutral facial behaviour patterns.

Subjects: Our database includes 69 different faces of students and research staff members of both sexes

(44% female), ranging in age from 19 to 62, having either a European, African, Asian, Carribean or

South American ethnic background.

Samples: The database consists of four major parts: one part of posed expression still images, one part

of posed expression videos and two parts of spontaneous expression videos. For the posed expressions

the subjects were asked to display 79 series of expressions that included either a single AU (e.g., AU2)
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Figure 3.1: Examples of static frontal-view images of facial expressions in the MMI Facial Expression
Database

Figure 3.2: Examples of apex frames of dual-view image sequences in MMI Facial Expression Database

or a combination of a minimal number of AUs (e.g., AU8 cannot be displayed without AU25) or a

prototypic combination of AUs (such as in expressions of emotion). The subjects were instructed by

an expert (a FACS coder) on how to display the required facial expressions.

For the posed videos, the subjects were asked to include a short neutral state at the beginning and

at the end of each expression. They were asked to display the required expressions while minimising

out-of-plane head motions. The posed expression videos were recorded using a mirror placed on a

table next to the subject at a 45 degrees angle so that the subject’s profile face was recorded together

with the frontal view. The still images were recorded using natural lighting and variable backgrounds

(e.g., Fig. 3.1). The posed expression videos were recorded with a blue screen background and two

high-intensity lamps with reflective umbrellas (e.g., Fig. 3.2).

The first part of the spontaneous expression videos was recorded in a living room environment with

no professional lighting added. The subjects were shown both funny and disgusting clips on a PC.

Their reaction to the clips was recorded and cut into separate neutral-expressive-neutral videos. The

expressions recorded were mainly happiness and disgust, with a fair number of surprise expressions

captured as well.
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The second part of the spontaneous data consists of 11 primary school children who were recorded by a

television crew of the Dutch tv program ‘Klokhuis’. They were asked to laugh on command. There was

also a comedian present who made jokes during the recording, which made the children laugh. These

spontaneous expressions were again cut into videos that contain neutral-expressive-neutral sequences.

This set of data contains severe head pose variations, as the children were free to move and thought

they weren’t being recorded at the time. We will refer to the spontaneous part of the database as the

MMI-database part 2 in the remainder of this thesis.

Metadata: Two experts (FACS coders) were asked to code the AUs displayed in the images constituting

the MMI Face Database. In the case of a number of facial-expression video sequences, the coders were

also asked to depict the temporal segments of displayed AUs. To date, all the objects in the database

have been event-coded for overall activation of AUs and approximately 300 videos have their temporal

segments of target actions coded frame by frame.

Since human observers may sometimes disagree in their judgements and may make mistakes occasion-

ally, the inter-observer agreement is again measured. Inter-observer agreement was expressed in terms

of Cohen’s kappa coefficient [Cohen, 1960], which is the proportion of agreement above what would be

expected to occur by chance. The mean kappa for inter-observer reliability was 0.91 for AUs at apex.

For the meta data available to the public, when a disagreement was observed the FACS coders made

a final decision on the relevant metadata by consensus. As the expressions shown were made on com-

mand, there was no need for the subject to self-report on the full expressions (e.g. ‘happiness’, ‘bored’,

etc.) that we recorded of them. For the same, measuring the correlation between the requested full

expression and the coders decision is not particularly useful and has not been attempted.

Retrieval and Inclusion of Samples: In order to allow a quick and easy web-based access to the

database and yet shield parts of the database that can be made available only to certain authorised

users, we used a Mandatory Multilevel Access Control model. In this model, the users can get rights

to use database objects at various security levels (i.e., administrators, confidential, users). This way

it is possible to create different sets of data that are available to different groups of users, such as a

set of data for internal use only and a set available to all registered users.

The database allows easy search according to a number of criteria such as data format, facial view,

AUs displayed, emotions shown, gender, age, etc. The provision of a preview per sample makes the

search even easier. The user can inspect previews of the selected data before deciding to download
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the desired material.

The current implementation of the database allows easy addition of either new samples or entire

databases. However, only the database administrators can perform such additions; an automatic

control of whether an addition matches the specified formats defined for the database objects has not

been realised yet.

The database has been developed as a user-friendly, direct-manipulation application. The Graphical

User Interface of the web-application is easy to understand and to use. On-demand on-line help and

a flash animation demonstrating the path that the user should follow to download the required facial

expression exemplars are other elements of user friendliness.

To summarise, the MMI-Facial Expression Database contains examples of all possible AUs and a great

amount of examples of the six basic emotions plus a number of other expression categories such as

boredom or an expression of ‘I don’t know’. It contains both posed and spontaneous expressions of a

large number of people, with occlusions such as beards, headscarfs, glasses and moustaches apparent

in great abundance. The spontaneous data contain large in-plane and out-of-plane head motion. All

videos are recorded as a full neutral-expressive-neutral expression sequence so that an analysis of the

temporal dynamics of facial expressions is possible. All examples are recorded in colour and for a

large portion of the database there are synchronised videos of frontal and profile view faces.

Together this makes the MMI-facial expression database the most comprehensive facial expression

database available at this moment. The database is already a great success: in 2006 the site was

visited 2876 times and in 2007 it was visited 5388 times. 593 users have registered with the database,

of which 247 users have proceeded to sign the End User License Agreement, which is a requisite to

make search queries and download the data. In the period of March 2006 until December 2007 an

average of over 10 GigaByte per month has been downloaded. Many researchers have already used the

data for their research and have referred to the database in their publications. For the near future a

facial expression recognition competition is planned based on the data from the MMI-facial expression

database.



Chapter 4

Facial feature point detection

An automatic facial expression analysis system usually consists of three consecutive steps: data ac-

quisition, feature extraction and classification. In the system we propose here, the data acquisition is

performed by one video camera. This means we will be working on time sequences of 2-dimensional

images, also called image sequences. From these image sequences we compute geometric features.

For the AU and emotion recognition systems, these features will be computed per frame. Later, for

analysing complex human behaviour, we will compute temporal-dynamic features that are extracted

from a variable number of frames, depending on the analysis of the temporal dynamics of AUs (see

chapter 9). The geometric features are then used as input to our machine learning techniques. In this

thesis we will propose to use a combination of GentleBoost [Friedman et al., 2000], Support Vector

Machines [Vapnik, 1995] and Hidden Markov Models [Rabiner, 1989].

As stated above, our proposed facial expression analysis system will use geometry-based features,

extracting such features as the velocities and positions of points and the distances between points.

Therefore the first step in our fully automated facial expression recognition system is to find the

coordinates of those facial points in each frame of a video. The locations of these points are found

in the first frame using a point detector which locates 20 facial points. The 20 points that we detect

are shown in figure 4.1 and were chosen as the minimum number of points theoretically needed to

distinguish the 26 AUs that can be recognised using geometric features. In all frames after the first

we will find the positions of these 20 points using a point particle-filtering based tracker, that uses

the coordinates of the points found in the first frame to initialise the tracker. In this chapter we will

describe how our facial feature point detection works.

51
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Previous methods for facial feature point detection could be classified into two categories: texture-

based and shape-based methods. Texture-based methods model the local texture around a given

feature point, for example the pixel values in a small region around a mouth corner. Shape-based

methods regard all facial feature points as a shape, which is learned from a set of labelled faces,

and try to find the proper shape for any unknown face. Typical texture-based methods include

gray-value, eye-configuration and neural-network-based eye-feature detection [Reinders et al., 1996],

log-Gabor filter based facial point detection [Holden and Owens, 2002], and two-stage facial point

detection using a hierarchy of Gabor filter networks [Feris et al., 2002].

Typical shape-based methods include detectors based on active shape or active appearance models

[Hu et al., 2003, Yan et al., 2003]. A number of approaches that combine texture- and shape-based

methods have been proposed as well. Wiskott et al. [Wiskott et al., 1997] used Gabor jet detectors

and modeled the distribution of facial features with a graph structure. Cristinacce and Cootes used

Haar features with an AdaBoost classifier and combined the classifier output with statistical shape

models in a probabilistic framework [Cristinacce and Cootes, 2003]. Chen et al. proposed a method

that applies a boosting algorithm to determine facial feature point candidates for each pixel in an

input image and then uses a shape model as a filter to select the most probable position of feature

points [Chen et al., 2004]. They used greyscale image patches as input to the classifiers. Cristinacce

and Cootes detected 22 points in frontal faces [Cristinacce and Cootes, 2006]. Like Chen et al. they

used greyscale image patches. In a test image the closest K matches for each facial point were found

based and these were input to a 2D shape model to find the set of patches that resulted in the most

probable positions of the facial points.

In general, although some of these detectors have been reported to perform quite well when localising

a small number of facial feature points such as the corners of the eyes and the mouth, none of them

detects all 20 facial feature points illustrated in Fig. 4.1 and, more importantly, none performs the

detection with high accuracy. To wit, the current approaches usually regard the localisation of a point

as a success if the distance between the automatically labelled point and the manually labelled point is

less than 30% of the true inter-ocular distance (IOD, the distance between the eyes). However, 30% of

the true inter-ocular value is at least 30 pixels in the case of the Cohn-Kanade database samples, which

we used to test our method. This means that a bias of 30 pixels for an eye corner would be regarded

as success even though the width of the whole eye is approximately 50 pixels. This is unacceptable

in the case of facial expression analysis, which represents the main focus of our research, since subtle
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Point name Symbol Definition
Right outer eye corner A Point near the side of the face where the outer folds of the upper and lower

right eyelid come together. This is not on the edge between the eyelid and the
white of the eye but on the other side of the fold of the eyelids

Left outer eye corner A1 Point near the side of the face where the outer folds of the upper and lower
right eyelid come together. This is not on the edge between the eyelid and the
white of the eye but on the other side of the fold of the eyelids

Right inner eye corner B Point near the nose where the upper and lower right eyelid come together,
selected on the inside of the eye, where the tear gland begins

Left inner eye corner B1 Point near the nose where the upper and lower left eyelid come together, se-
lected on the inside of the eye, where the tear gland begins

Right inner eye brow D Point horizontally on the edge between the brows and the skin of the head
between the brows, vertically halfway on the width of the eyebrow

Left inner eye brow D1 Point horizontally on the edge between the brows and the skin of the head
between the brows, vertically halfway on the width of the eyebrow

Right outer eye brow E Point vertically on the edge between the skin of the forehead and the eye
brow. Horizontally approximately above the outer eye corner. If a distinct
shape feature is present (like an arch or corner) select this point, otherwise
select point right above the relevant outer eye corner

Left outer eye brow E1 Point vertically on the edge between the skin of the forehead and the eye
brow. Horizontally approximately above the outer eye corner. If a distinct
shape feature is present (like an arch or corner) select this point, otherwise
select point right above the relevant outer eye corner

Right upper eyelid F Point on the right upper eyelid, horizontally on the highest part of the eyelid,
vertically immediately above the line where the eyelashes attach

Left upper eyelid F1 Point on the left upper eyelid, horizontally on the highest part of the eyelid,
vertically immediately above the line where the eyelashes attach

Right lower eyelid G Point on the right lower eyelid, horizontally on the lowest part of the eyelid,
vertically immediately below the line where the eyelashes attach

Left lower eyelid G1 Point on the left lower eyelid, horizontally on the lowest part of the eyelid,
vertically immediately below the line where the eyelashes attach

Right nostril H Point on the right nostril, vertically halfway between the tip of the nose and
where the nostril attaches to the face, horizontally in the middle of the width
of the nostril

Left nostril H1 Midpoint on the left nostril, halfway between the tip of the nose and where
the nostril attaches to the face

Right mouth corner I Rightmost point where the skin parts to form the two lips1

Left mouth corner J Leftmost point where the skin parts to form the two lips
Upper lip M Point on the line where the red of the lower lip changes to the overall skin

colour, horizontally in the middle of the philtrum
Lower lip L Point on the line where the red of the lower lip changes to the overall skin

colour, halfway between the two mouth corners
Chin M Lowest point on the chin boss, before chin arches towards the neck
Nose N Tip of the nose: the point that is closest to the camera

Table 4.1: Definition of the 20 facial points used in our system.

changes in the facial feature appearance will be missed due to the errors in point localisation and

subsequent tracking.

The goal of our fiducial facial point detector is to detect 20 fiducial facial points (illustrated in Fig. 4.1)

plus the irises and the medial point of the mouth in the face region. In table 4.1 we give a definition

of these points, which is needed for manual annotation of the points for training and evaluation of

the facial point detection system. Left and right is from the subject’s point of view. The description

assumes a frontal upright pose.

These fiducial facial points are detected in four consecutive steps. First we find the face region in

the input image. Next, the detected face region is roughly divided into 20 rectangular regions of

interest (ROIs), each corresponding to one facial point to be detected. The employed method then
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Figure 4.1: Fiducial facial point model (left) and fiducial facial points annotated on an image of a
neutral face from the MMI Facial Expression Database

computes feature patches to detect points in the relevant ROI. These feature patches are constructed

by concatenating for a fixed sized image patch both the gray level intensities and the Gabor filter bank

responses into one large vector. We do not use histogramming to ensure that we capture the structure

contained in the patch. We then use a GentleBoost classifier to select the patch at the coordinate

inside an ROI that best represents the facial point we are looking for. In the following sections we

will explain in detail how each step is performed. Figure 4.2 shows a graphical outline of the method.

4.1 Face detection

The first step in any fully automatic facial expression analysis method is face detection, i.e., identifi-

cation of all regions in the scene that contain a human face. Numerous techniques for face detection

in still images have been developed [Yang et al., 2002, Li and Jain, 2005]. The methods that had the

greatest impact on the computer vision community (measured by, e.g, citations) include the following.

A multi-layer neural network was used by Rowley et al. [Rowley et al., 1998] to discern face from

non-face patterns using the intensities and spatial relationships of pixels in face and non-face images.

Sung and Poggio [Sung and Poggio, 1998] proposed a similar method, using a neural network to find a

discriminant function based on distance measures. Moghaddam and Pentland developed a probabilistic

visual learning method based on density estimation in a high-dimensional space using an eigenspace

decomposition [Moghaddam and Pentland, 1997]. The method has been applied to face detection,
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Figure 4.2: Outline of the fiducial facial point detection system.

coding and object recognition. Pentland et al. [Pentland et al., 1994] developed a real-time, view-

based and modular eigenspace description technique for face recognition, where the face could be in

various poses relative to the observer.

More recent work in face detection include Li et al. [Li et al., 2005], who learn multiview face subspaces

using Independent Component Analysis (ICA). They showed that ICA, working on grey-scale images,

was able to learn without supervision subspaces for various head poses in images, while Principal

Component Analysis could not. Using ICA they could both detect faces with arbitrary head pose

and could get a coarse head pose estimation. Hayashi and Hasegawa proposed a system that is

able to detect faces from extremely low resolution images where the face patch is only 6x6 pixels

big [Hayashi and Hasegawa, 2006]. Two detectors using different parameters for creating Haar-basis

features were applied to the input images and their output was fused to a final classification result by

a SVM.

Perhaps the most significant face detection method to date was proposed in 2001 by Viola and Jones

[Viola and Jones, 2001]. The Viola-Jones face detector consists of a cascade of classifiers trained by

AdaBoost. Each classifier operates on a Haar Basis representation of the input image. It uses integral

histogram searching [Porikli, 2005] to enable a fast search on many locations and scales. While this
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integral imaging process is essential to the speed of the detector, it restricts the detector to analysing

rectangular regions2. For each stage in the cascade, a subset of features is chosen using a feature

selection procedure based on AdaBoost. To detect the face in the first frame of an input image sequence

scene we make use of a variant of this real-time face detector, as proposed in [Fasel et al., 2005].

The adapted version of the Viola-Jones face detector that we employ uses GentleBoost instead of

AdaBoost. GentleBoost has been shown to be more accurate and converges faster than AdaBoost

(see [Friedman et al., 2000] and a discussion in section 6.3.1). It uses a basic set of Haar basis filters,

the responses of which are the feature values. In other words, each filter represents one feature. At

each feature selection step (i.e., for every feature selected by GentleBoost), the proposed algorithm

refines the feature originally proposed by GentleBoost. The algorithm creates a new set of image

filters by placing the original filter and slightly modified versions of the filter at a two pixels distance

in each direction and then computes the features returned by this image filter. The modified filters

are created by scaling the original filter up to two pixels and reflecting each filter horizontally about

the centre and superimposing it on the original. The modified filters are thus more complex variations

of the original filters and so this process can be thought of as a single-generation genetic algorithm.

Because we start of using only a relatively small number of filters and we only compute the responses

of modified filters if its parent filter was found to be successful for the face detection task, it can be

expected to be much faster and to achieve better results than searching the responses of all possible

filters (features). Finally the employed version of the face detector uses a smart training procedure in

which, after each single feature, the system can decide whether to test another feature or to stop and

make a decision.

The face detector was evaluated on a set of 422 images with neutral expressions taken from the

Cohn-Kanade face database [Kanade et al., 2000]. This set of images is representative for the type

of imagery that we target in our systems: near-frontal views of faces recorded under normal lighting

conditions. The recognition rate on this set was 100%.

4.2 ROI detection

The face detector returns a bounding box that delimits the face (i.e., the ‘face box’). We divide this

face box into ROIs, one for each facial point we wish to detect. Because the locations of the ROIs

2This could be problematic when non-upright faces are present. An image pre-processing step would be needed that
rotates the input image over a number of predefined angles to overcome this problem.
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are defined using anatomic relations based on the locations of the irises and the medial point of the

mouth, these points are localised first.

The iris and medial point of the mouth are detected as follows. First, we divide the face region

horizontally in two: the upper face region containing the eyes and the lower face region containing the

mouth. Since the utilised face detector is highly accurate, the face region contains all 20 characteristic

facial points and little to no non-face regions (such as areas containing the hair, see fig. 4.2). It is

therefore sufficient for the first step to roughly divide the face region horizontally in two halves. The

upper face region is again divided vertically in two halves so that each eye can be localised separately.

The irises are localised in the segmented eye regions by sequentially applying the analysis of the

row-wise sum of intensities (depicting the intensity differences between the successive rows) followed

by the analysis of the column-wise sum of intensities (depicting the intensity differences between the

successive columns). The minimum of the row intensities of the eye-region box corresponds to the

y-coordinate of an iris, and the first minimum of the column-wise intensity sums of the eye-region box

corresponds to the x-coordinate of an iris (see figure 4.2).

To describe the texture of the face, we intend to use Gabor filters, which we will describe in some

detail in section 4.3. Although the Gabor filters are relatively insensitive to shift and scale variance,

the grey-level features are not. The Gabor filters will also have a different response to a rotated input

image. Therefore, registration of the input face image is mandatory. When the spatial coordinates of

both irises are known, we are able to register the face by means of two parameters: the interocular

angle αI that the line connecting the irises makes with the horizontal image axis and the interocular

distance DI between the irises. The input face box is rotated using αI and scaled by a factor 100
DI

,

so that the registered face is upright with the interocular distance D′
I = 100 pixels. From this point

onward, distances measured in pixels assume that we have registered the face image.

The registration method we use here is based on two points and is thus only capable of coping with

in-plane rotations (roll) and scale variations. It furthermore assumes that all points of the face lie

on a plane. This means that our system will have great difficulty with faces that have a pitched or

yawed pose with respect to the camera (i.e. out-of-plane rotations). If we imagine that there is large

pitch (e.g. the person is looking down), the registration method will find that, as the positions of the

eyes have only moved down a little, αI ≈ 0 and D is the same as the upright face, too. Therefore,

no registration will be carried out, while this would obviously be necessary. Similarly, if there would
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have been significant pitch but no zoom, D would decrease as the projection of the eyes on the camera

image plane places the eyes closer together. This would cause an unwanted transformation, as the

decreased D invokes a transformation to cancel the (incorrectly perceived) zoom. In fact, what we

would like is a general purpose 3D-model of a face, that uses only 2D input information to compute

a 3D transformation of the input image. However, the implementation of 2D to 3D techniques goes

beyond the scope of this thesis and is considered future work.

To locate the medial point of the mouth, we first apply an edge detector to the input image. Such an

edge representation of the lower face region is illustrated in Fig. 4.2. Analysis of the histogram of the

edge representation gives us the position of the medial point of the mouth. The centre of the widest

peak will define the vertical position. By selecting the widest peak of the histogram, the possibility of

detecting the nostrils instead of the mouth is avoided. The horizontal position of the medial mouth

point is then defined as the position that corresponds to the highest peak of the histogram of the line

defined by the mouth’s vertical position (see figure 4.2).

Subsequently, we use the detected positions of the irises and the medial point of the mouth to divide

the face into 20 regions, based on rules defined by the anatomy of the human face. Each of the points

to be localised is within one ROI. An example of ROIs extracted from the face region for points B,

I, and J (see figure 4.1), is depicted in Fig. 4.2. The method is capable of detecting facial points in

images of neutral frontal-view faces. Because of this neutrality and frontal-view constraints, we tested

the system on all the first frames of the Cohn-Kanade database, a total set of 422 images. On this

set we achieved a detection rate of 100% (i.e., all the segmented ROIs were correctly positioned to

contain their respective facial feature point).

4.3 Gabor Feature Extraction

The proposed facial feature point detection method uses individual feature patches to detect points in

the relevant ROI. The feature models are defined as GentleBoost templates learned from both the gray

level intensity and Gabor filter response representation of square 13x13 pixels image patches centred

around a point.

Recent work [Donato et al., 1999] has shown that a Gabor filter approach for local feature extrac-

tion outperforms PCA (Principal Component Analysis), FLD (Fisher’s Linear Discriminant) and
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LFA (Local Feature Analysis). The essence of the success of Gabor filters is that they remove

most of the differences between images that are caused by variation in lighting and contrast or by

small translation and deformation transformations [Osadchy et al., 2007]. Gabor filters seem to be

a good approximation of the sensitivity profiles of neurons found in the visual cortex of higher ver-

tebrates [Jones and Palmer, 1987]. There is evidence that those cells come in pairs with even and

odd symmetry [Field, 1978, Burr et al., 1989], similar to the real and imaginary part of Gabor filters.

Therefore it seems that Gabor filters are a good approach for computer vision problems that simulate

human vision tasks.

A 2D Gabor filter ψ (x, y) can be defined as:

ψ (x, y) = αβ
π
e−(α2x′2+β2y′2)e(2πjf0x′) (4.1)

with

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
(4.2)

where f0 is the central frequency of a sinusoidal plane wave, j the imaginary unit, θ is the radial

rotation of the Gaussian envelope and the plane wave, and α and β are the parameters for scaling two

axes of the elliptic Gaussian envelope. Note that equation (4.1) ensures that the orientation of the

Gaussian envelope and the orientation of the sinusoidal carrier f0 are the same, which is one of the

characteristics of complex cells of the mammals’ visual cortex [Jones and Palmer, 1987]. The Gabor

function is actually a sinusoidal plane wave (second part of equation (4.1)) modulated by a Gaussian

shaped function (first part of equation (4.1)). Its 2D Fourier transform is:

ψ (u, v) = exp

(

−π2

{

(u cos θ + v sin θ)2

α2
+

(u sin θ − v cos θ)2

β2

})

(4.3)

By fixing the ratio of the wave frequency and the sharpness of the Gaussian we maintain a constant

number of waves in the spatial filter (4.1). The ratios which are known to satisfy this property for the

complex cells in the human visual cortex are [Jones and Palmer, 1987]:

γ =
f0

α
=

1√
π · 0.9025

(4.4)
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η =
f0

β
=

1√
π · 0.58695

(4.5)

Thus, by using 4.4 and 4.5 in equations 4.1 and 4.3 a normalised filter can be presented in spatial

domain as:

ψ (x, y) =
f2

o

πγη
exp

{

−
(

f2
0

γ2
x′2 +

f2
0

η2
y′2
)}

exp
(

2πjf0x
′
)

(4.6)

and in frequency domain as:

Ψ (u, v) = exp
(

−π2

f2

0

{

γ (u′ − f0) + η2v′2
}

)

(4.7)

where

u′ = u cos θ + v sin θ

v′ = u sin θ + v cos θ
(4.8)

Thus, in the frequency domain the filter is an oriented Gaussian with orientation θ centred at frequency

f0. A Gabor filter formulated in this way has a zero frequency response value (DC-response) close

to 0 and is the same for all central frequencies. This ensures that the method is insensitive to global

illumination variations.

Several Gabor filters can be combined to form a filter bank. The filter bank is usually composed

of filters in various orientations and frequencies, with equal orientation spacing and octave frequency

spacing, while the relative widths of Gaussian envelope γ and η stay constant. In the frequency domain

the Gabor filter must obey the Nyquist rule, which means that (∀θ) f0 ≤ 0.5.

We extract a feature vector for a certain location in an image from the 13x13 image patch centred on

that point. As features we use the gray scale image information of that patch plus the responses from

a bank of 48 Gabor filters at 8 orientations and 6 spatial frequencies (2:12 pixels/cycle at 1/2 octave

steps). We thus attain the set Fp consisting of 169 × 49 = 8281 features to represent a point.
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4.4 Facial Point Detection using GentleBoost

We use a GentleBoost classifier to identify the location of a target point within its ROI. Because of

the high dimensionality of our data, boosting techniques are very suitable classifiers, as they implicitly

perform feature selection in the training stage. The small number of features actually employed by the

trained GentleBoost classifier ensures fast detection of the characteristic facial points and improves gen-

eralisability. We have chosen GentleBoost instead of AdaBoost as it converges faster than AdaBoost,

and performs better for object detection problems in terms of accuracy [Torralba et al., 2004]. It is

simple to implement, it is numerically robust and it has been shown experimentally to outperform

other boosting variants for the face detection task [Lienhart et al., 2003] (with respect to detection

accuracy).

The performance of boosting methods on data which are generated by classes that have a significant

overlap, in other words, classification problem where even the Bayes error is significantly high is

discussed in [Freund and Schapire, 2000]. For this case, GentleBoost performs better than AdaBoost

since AdaBoost over-emphasises the atypical examples which eventually results in inferior rules. As

explained in [Freund and Schapire, 2000], the reason for this might be that GentleBoost gives less

emphasis to misclassified examples since the increase in the weight of the example is linear in the

negative margin, rather than exponential.

For the AU recognition approach described in chapter 6, we use GentleBoost as a feature selector

preceding a more powerful SVM classifier. We have not applied this approach to the problem of

characteristic facial point detection, as the good results using GentleBoost only (see section 4.5)

indicated that this more complicated and computationally expensive approach was not needed.

The outline of the GentleBoost algorithm is as follows. As weak classifiers we use a simple linear

function with variables a and b and threshold ζ to approximate the labels y given a one-dimensional

set of features x:

y = a(x > ζ) + b (4.9)

At each boosting round, a weak classifier is trained for every feature. These are our candidate weak

classifiers. We find for each feature j the optimal values for aj , ζj and bj , measured by weighted

least-squared error. In our case, the feature is either a gray level value or a Gabor filter response. The
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Figure 4.3: Positive and negative examples for training the classifier for the right inner eye corner.
The big white square represents the 9 positive examples. Eight negative examples have been randomly
picked near the positive examples and another 8 are randomly chosen from the remainder of the region
of interest.

fitting of the regression function is done for every feature 1 <= j <= |Fp| for all training examples by

minimising the weighted error ηj :

ηj = argmina,b,ζ

∑

i

(

wi |yi − (aj (xi,j > ζj) + bj)|2
)

∑

iwi
(4.10)

where i is the i-th training example, xi,j the value of the j-th feature of training example i and yi

is its class label, yi ∈ 0, 1. Here we use equation 4.9 to determine the class of instance i. We apply

equation 4.10 to all features j, and select the feature with lowest error ηJ , denoted by J . The weak

classifier trained for this round is then defined by the corresponding linear function parameters aJ , bJ

and ζJ :

fm (xi) = aJ (xi,J > θJ) + bJ (4.11)

where J is the feature chosen at round m. The next step is to update the strong classifier F (xi,m− 1)

that is an ensemble of the m − 1 previously selected weak classifiers f (x) . The output of the strong

classifier after m rounds is found as follows:

F (xi,m) = F (xi,m− 1) + fm (xi) (4.12)

and the updated weights for each training example after round m are found as:
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wi ⇐= wie
−yifm(xi) (4.13)

The sequential selection of a new weak classifier, calculation of the strong classifier output and updating

of the weights continues until the output of the strong classifier converges with the class labels of the

training data, or some other stop condition has been met. Finally, the weights of the samples should

be re-normalised. Now, for a new testing example x′ the output of the GentleBoost classifier can be

calculated as:

F
(

x′
)

=

M
∑

m=1

fm

(

x′
)

(4.14)

where M is the number of the most relevant features, i.e., the value of m at the time that the

GentleBoost classifier converged. If this were a binary classification problem, the class C of instance x

is then found as C = sign(F ). However, for the problem of facial point detection we will keep working

with the real values F (x).

In the training phase, GentleBoost feature templates are learned using a representative set of positive

and negative examples. As positive examples for a facial point, we used the features derived from

a block of 9 points centred on the (manually selected) true point. For each facial point we used

two sets of negative examples. The first set contains 8 randomly chosen image patches that are 2

to 4 pixels separated from the 9 positive sample points. The second set contains 8 image patches

randomly displaced in the relevant ROI (Fig. 4.3), with a minimum distance of 4 pixels to the positive

samples. Thus, for each target point, we have 9 positive and 16 negative examples, resulting in a set

with dimensions 25 × 8281 representing the training data for each point in a training image. Even

though each feature can be computed very efficiently, computing the complete set is computationally

expensive. Adding the fact that the feature representation is highly redundant, the choice of boosting

techniques seems justified.

Eventually, in the testing phase, each ROI is filtered first by the same set of Gabor filters used in the

training phase. Then, for detection of the relevant characteristic facial point an input 13x13 pixels

sliding window is slid pixel by pixel across the ROI. For each position of the sliding window, the

GentleBoost classifier returns a response which is a measure of similarity between the feature vector

retrieved at the current position of the sliding window and the learned feature point model. After

scanning the entire ROI, the position with the highest response (i.e., with the largest positive value
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Figure 4.4: Examples of accurately detected facial points.

of F (x)) is chosen as the location of the feature point in question.

4.5 Evaluation

To evaluate the performance of the point detector, we measured the distance between the automatically

detected points and the manually annotated points. We consider a point to be located correctly if the

distance ep between the automatically detected point and the manually annotated point is less then

10% of the IOD, i.e. ep < 0.1DI . The system was evaluated both on the Cohn-Kanade database and

on the MMI database. When tested on 300 images taken from the Cohn-Kanade database in a three-

fold cross-validation evaluation, the system achieved an average 93% recognition rate for all points on

all folds. Table 4.2 shows the results for every facial point separately. When trained on all 300 images

taken from the Cohn-Kanade database and tested on 244 images taken from the MMIDatabase, an

average 92.2% classification rate was achieved. Table 4.3 shows the results for the test on the MMI

Database. In this table, we have also listed the average error ep per facial point, measured in units of

DI . Figure 4.4 shows some typical point detection results.
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Detected point Cl. Rate Detected point Cl. Rate

A Right eye outer corner 0.92 G Right eye lower eyelid 0.95

A1 Left eye outer corner 0.96 G1 Left eye lower eyelid 0.99

B Right eye inner corner 0.96 H Right nostril 0.98

B1 Left eye inner corner 0.99 H1 Left nostril 0.97

D Right brow inner corner 0.96 I Right mouth corner 0.97

D1 Left brow inner corner 0.95 J Right mouth corner 0.91

E Right brow outer corner 0.96 K Mouth top 0.93

E1 Left brow outer corner 0.90 L Mouth bottom 0.80

F Right eye upper eyelid 0.91 M Chin 0.90

F1 Left eye upper eyelid 0.83 N Tip of nose 0.98

Average for all points: 0.93

Table 4.2: Characteristic Facial Point detection results for 300 samples from the Cohn-Kanade
database

Cl. rate ep Cl. rate ep

A 0.784 0.079 G 0.982 0.026

A1 0.976 0.045 G1 0.982 0.018

B 0.976 0.024 H 0.976 0.030

B1 0.952 0.035 H1 0.976 0.036

D 0.569 0.093 I 0.904 0.068

D1 0.802 0.075 J 0.928 0.053

E 0.928 0.035 K 0.964 0.037

E1 0.958 0.035 L 0.952 0.042

F 0.982 0.037 M 0.904 0.052

F1 0.982 0.043 N 0.952 0.058

Avg 0.922 0.046

Table 4.3: Characteristic Facial Point detection results for 244 samples from the MMI-Facial Ex-
pression Database. ep is the average relative error, measured in units of Interocular Distance DI



Chapter 5

Feature extraction

Our AU analysis system uses spatio-temporal facial geometry-based features computed from tracked

facial feature points. In this chapter we will explain how the previously detected facial points (see

chapter 4) are tracked and how the features that are used for AU activation detection and AU temporal

phase detection are extracted from the tracking data.

5.1 Facial feature point tracking

After localisation of the 20 characteristic facial points in the first frame of an input face video (see

chapter 4), the points are tracked in all subsequent frames. Standard optical flow techniques are

commonly used for facial point tracking in facial expression analysis. For example, to achieve facial

point tracking, Tian et al. [Tian et al., 2001] and Cohn et al. [Cohn et al., 2004b] use the standard

Lucas-Kanade optical flow algorithm [Lucas and Kanade, 1981], and Xiao et al. [Xiao et al., 2003]

use an “inverse compositional” extension to the Lucas-Kanade algorithm to realize fitting of 2D and

combined 2D+3D Active Appearance Models to images of faces. To omit the limitations inherent in

optical flow methods, such as the accumulation of error and the sensitivity to noise, occlusion, clutter,

and changes in illumination, few researchers used sequential state estimation techniques to track facial

points in image sequences.

Both, Zhang and Ji [Zhang and Ji, 2005] and Gu and Ji [Gu and Ji, 2005] used facial point tracking

based on a Kalman filtering scheme, which is the traditional tool for solving sequential state prob-

lems. The derivation of the Kalman filter is based on a state-space model governed by two assumptions

66
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[Kalman, 1960]: (i) linearity of the model and (ii) Gaussian distribution of both the dynamic noise

in the process equation and the measurement noise in the measurement equation. Under these as-

sumptions, derivation of the Kalman filter leads to an algorithm that propagates the mean vector and

covariance matrix of the state estimation error in an iterative manner and is optimal in the Bayesian

setting.

To deal with the state estimation in nonlinear dynamical systems, the extended Kalman filter has

been proposed, which is derived through linearisation of the state-space model. However, many of

the state estimation problems, including human facial expression analysis, are nonlinear and quite

often non-Gaussian too. Thus, if the face undergoes a sudden or rapid movement, the prediction of

features positions from Kalman filtering will be significantly off. To handle this problem, Zhang and

Ji [Zhang and Ji, 2005] and Gu and Ji [Gu and Ji, 2005] used the information about the IR-camera-

detected pupil location together with the output of Kalman filtering to predict facial features positions

in the next frame of an input face video. To overcome these limitations of the classical Kalman filter

and its extended form in general, particle filters have been proposed. In this section we will use

Particle Filtering with Factorised Likelihoods (PFFL, [Patras and Pantic, 2004]). We will also give a

basic introduction to particle filtering. For a detailed overview of the various facets of particle filters,

see [Andrieu et al., 2004].

In recent years, particle filtering has been the dominant paradigm for tracking the state α of a temporal

event given a set of noisy observations Y =
{

y0 . . . , yt−1, yt
}

up to the current time instant t. In our

case, the state α is a description of the locations of a set of facial fiducial points while the observations

in the set Y are the frames of an input face video.

The main idea behind particle filtering is to maintain a set of probable solutions that are an efficient

representation of the conditional probability p (α |Y ). By maintaining a set of solutions instead of

a single estimate (as is done by Kalman filtering, for example), particle filtering is able to track

multimodal conditional probabilities p (α |Y ), and it is therefore robust to missing and inaccurate

data and particularly attractive for estimation and prediction in nonlinear systems and systems where

the probability distribution cannot be modeled by a Gaussian distribution.

Particle Filtering with Factorised Likelihoods is an extension to the Auxiliary Particle Filtering theory

introduced by Pitt and Shephard [Pitt and Shephard, 1999], which itself is an extension to the classic

Condensation algorithm [Isard and Blake, 1998]. As opposed to its predecessors, PFFL does not track
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all points independently but tracks ‘constellations’ of facial points instead. Providing the tracker with

a priori information about the probability of where the elements of these constellations are relative to

each other allows the PFFL tracker to give more accurate predictions of the positions of the points.

Fig. 5.1 shows typical results of the tracker on images from the MMI Facial Expression Database and

the Cohn-Kanade Database. In the figure the top three rows are from the MMI database and the

bottom two rows from the Cohn-Kanade database. All rows start with a neutral expression. The MMI

database rows subsequently show one frame where the action is growing stronger (onset-phase), the

third column shows the peak of the expression (apex-phase) and the fourth and fifth columns show

frames where the action is diminishing again (offset phase). The rows for the Cohn-Kanade database

show the onset-phase in the second through to the fourth column and the apex phase in the fifth and

last column.

5.1.1 Condensation algorithm

The main idea of particle filtering is to maintain a particle based representation of the a posteriori

probability p (α | Y ) of the state α given all the observations Y up to the current time instance. This

means that the distribution p (α | Y ) is represented by a set of pairs {(sk, πk)} such that if sk is chosen

with probability equal to πk, then it is as if sk was drawn from p (α | Y ). In the particle filtering

framework our knowledge about the a posteriori probability is updated in a recursive way. Suppose

that at a previous time instance we have a particle based representation of the density p (α−|Y −),

that is, we have a collection of K particles and their corresponding weights (i.e.
{(

s−k , π
−
k

)}

). Then,

the Condensation Particle Filtering can be summarised as follows:

1. DrawK particles s−k from the probability density that is represented by the collection
{(

s−k , π
−
k

)}

.

2. Propagate each particle s−k with the transition probability p (α|α−) in order to arrive at a

collection of K particles sk.

3. Compute the weights πk for each particle as follows,

πk = p (y | sk) (5.1)

Then normalise so that
∑

k πk = 1.
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Figure 5.1: Results from the fiducial facial point tracker, which uses Particle Filtering with Factorized
Likelihoods. 20 fiducial facial points were tracked in 332 sequences of up to 200 frames taken from the
MMI Database and the Cohn-Kanade database. The top three rows are from the MMI database and
the bottom two rows from the Cohn-Kanade database. All rows start with a neutral expression. The
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This results in a collection of K particles and their corresponding weights (i.e. {(sk, πk)} which is an

approximation of the density p (α|Y ).

5.1.2 Particle filtering with Factorised likelihoods

The Condensation algorithm has three major drawbacks. The first drawback is that a large amount

of particles that result from sampling from the proposal density p (α|Y −) might be wasted because

they are propagated into areas with small likelihood. The second problem is that the scheme ignores

the fact that while a particle with an N dimensional state sk = 〈sk1, sk2, ..., skN 〉 might have a low

likelihood, it can easily happen that parts of it might be close to the correct solution. Finally, the third

problem is that the estimation of the particle weights does not take into account the interdependencies

between the different parts of the state α.

Particle filtering with Factorised likelihoods [Patras and Pantic, 2004] attempts to solve these problems

in one step, given the case that the likelihood can be Factorised, that is, in the case that p (y|α) =

∏

i p (y|αi). It uses as proposal distribution g (α) the product of the posteriors of each αi given the

observations, that is g (α) =
∏

i p (αi|y), from which we draw samples sk. These samples are then

assigned weights πk, using the same proposal distribution. We now find πk and sk as follows:

1. Propagate all particles s−k via the transition probability p (αi|α−) in order to arrive at a collection

of K sub-particles µik. Note, that while s−k has the dimensionality of the state space, the µik

have the dimensionality of the partition i.

2. Evaluate the likelihood associated with each sub-particle µik, that is let λik = p(y|µik).

3. DrawK particles s−k from the probability density that is represented by the collection {(s−k , λikπ
−
k )}.

4. Propagate each particle s−k with the transition probability p (αi|α−) in order to arrive at a

collection of K sub-particles sik. Note, that sik has the dimensionality of the partition i.

5. Assign a weight πik to each sub particle as follows, wik = p(y|sik)
λik

, πik = wik
P

j wij
. With this

procedure, we have a particle-based representation for each of the N posteriors p (αi | y). That

is, we have N collections (sik, )πik, one for each i.

6. Sample K particles from the proposal function g (α) =
∏

i p (αi | Y ). This is approximately

equivalent to constructing each particle sk = 〈sk1...ski...skN 〉 by sampling independently each

sik from p (αi | Y ).
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7. Assign weights πk to each particle as follows:

πk =
p (sk|Y −)

∏

i p (sik|Y −)
(5.2)

8. Finally, the weights are normalised to sum up to one.

With this, we end up with a collection {(sk, πk)} that is a particle-based representation of p (α|Y ). Note

that at the numerator of eq. 5.2 the inter-dependencies between the different sub-particles are taken

into consideration. On the contrary, at the denominator, the different sub-particles are considered

independent. In other words, the re-weighting process of eq. 5.2 favours particles for which the joint

is higher than the product of the marginals.

5.1.3 Rigid and morphological observation models

In steps 2 and 5 of the PFFL algorithm described in section 5.1.2, the likelihood and the weight

of each sub-particle are determined by applying an observation model. We use two different mod-

els. Both models are robust, invariant to lighting conditions, colour-based observation models for

template-based tracking. The first model is suitable for tracking the motion of image patches around

facial features that do not change their appearance significantly. The second model allows for minor

morphological transformations of the image patch, but is computationally more expensive. The mod-

els are initialised in the first frame of an image sequence when a set of n = 20 windows are centred

around the characteristic facial points detected by the point detector described in chapter 4 and that

will be tracked through the remainder of the image sequence. Let us denote with oi the template

feature vector, which contains the RGB colour information at window i in frame 1.

We need to define p (y|αi). Let us denote with y (αi) the template feature vector that contains the

RGB colour information at the image patch around point αi. We use a colour-based difference between

the vectors oi and y (αi) that is invariant to global changes in the intensity as follows:

c (oi, y (αi)) =

(

oi

E {oi}
− y (αi)

E {y (αi)}

)

(5.3)

where E {x} is the (scalar) average taken over the average intensities of all colour channels on a colour

template x. It is easy to show that the colour difference vector c (oi, y (αi)) is invariant to global
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changes in the light intensity 1. Finally, we define the scalar colour distance using a robust function

ρ. Let us denote with j the index of the colour difference vector j, that is cj (oi, y (αi)), the difference

in a specific colour channel at a specific pixel. The scalar colour distance is then defined as:

dc(oi,y(αi)) = Ej |ρ(cj(oi, y(αi)))| (5.4)

where the robust function ρ that has been used in our experiments is the L1 norm.

The second model allows for non-rigid deformations of the initial template, as mentioned above. Let us

denote this unknown transformation by φ : N2 → N2, a transformation that gives the correspondence

between the pixel coordinates of the colour template oi and the image patch y (αi). Then, let us denote

with y (αi, φ) the template that results after the nonrigid transformation φ is applied to the image

patch y (αi). The distance metric dm between the initial template oi and y (αi) contains two terms:

the first term, dc (oi, y(αi, φ)), is similar to the distance measure dc(oi, y(αi)) for the rigid observation

model, only now we take the minimum colour distance over all possible deformations φ. The second

term, ds (φ), is a measure of the shape deformation that is introduced by the transformation φ. The

morphology term ds (φ) is defined as the average Euclidean distance over the pixel based displacements,

that is

ds (φ) = Ei(‖i− φ (i)‖2) (5.5)

where ‖x‖2 is defined as the L2 norm of x and, with a slight abuse of notation, i denotes pixel

coordinates. The distance measure is thus defined as:

dm (oi, y (αi)) = minφ (dc (oi, y (αi, φ)) + λds (φ)) (5.6)

where the first term is used to penalise large colour-based distances, the second term is used to penalise

large shape deformations and the parameter λ controls the balance between the two terms. Finally,

the observation likelihood is calculated as follows:

p(y|αi,oi) =
1

z
exp(

−do(y(αi),oi)

σi
) (5.7)

1Note that c contains the colour differences over all colour channels(R, G, B).
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where σi is a scaling parameter for template i and do (x,y) is either the distance measure dc defined

in (5.4) or the distance measure dm defined in (5.6) depending on which observation model is applied.

The term z is a normalisation term, which in the particle filtering framework can be ignored, since

the weights of the particles are renormalised at the end of each iteration to sum up to one.

The morphological model is used for points that strongly change their shape, in our case the mouth

corners and eye corners. The rigid model is used for all other points. It is sufficiently accurate for

representation of the target points, which do not significantly change in appearance during facial

expressions, and it is cheaper to compute than the morphological model.

5.1.4 Transition model and priors

Once the observation model is defined, we need to model the transition probability density function

that is used to generate a new set of particles given the current set and to specify the scheme for

reweighting the particles by eq. (5.2).

The transition probability p(αi|α−) models our knowledge of the dynamics of the features, that is,

it models our knowledge of the feature’s position α =< αi, . . . , αn > in the current frame given its

position α− in the previous frame. To avoid sampling from a complicated distribution, we assume

that p(αi|α−) = p(αi|α−
i ), i.e. we assume that each sub-particle can be propagated independently of

other sub-particles. We use a simple zero order motion model with Gaussian noise, that is,

p(αi|α−) = α−
i +N(0, σ) (5.8)

The reweighting scheme employed by the tracker uses training data to learn the a priori interde-

pendencies between the positions of the facial microfeatures (i.e., facial characteristic points). In the

utilised modelling, the fraction in eq. (5.2) is approximated by a prior on the relative positions of

the facial points. This can be illustrated as shown in the graphical model of Fig. 5.2, where the

correlations between various sub-particles — in our case facial points — are depicted by the dashed

lines. This is evaluated with Parzen density estimation:

πk =
∑

j

Ξ[d[q(sk), hj ], σp] (5.9)
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Figure 5.2: The assumed transition model. αi and α−
i are the current and the previous state of a

facial point i and yi and y−i are the current and the previous observations. Each facial point’s state
can be represented as a simple Markov chain in temporal domain whilst in each time instant different
facial points may be related. The dashed lines represent those interdependencies.

where the collection {hj} is the collection of training data, q(sk) is an affine transformation function

that registers the data from the current face (i.e., the particle sk) to the training data (i.e., to the

collection hj), d(a, b) is the Euclidian distance function between the registered particle a and a training

datum b and Ξ(x, y) is the Parzen density kernel function, in our case a Gaussian kernel with standard

deviation σp.

As the collection of training data {hj}, we used in our study sets of (semi-)automatically annotated

data containing the coordinates of facial characteristic points belonging to four facial components: eye-

brows, eyes, nose-chin and mouth. The underlying assumption is that correlations between the points

belonging to the same facial components are more important for facial expression recognition than

correlations between the points belonging to different facial components. This is consistent with psy-

chological studies that suggest that: a) the brain processes facial expressions locally/analytically rather

than holistically whilst it identifies faces holistically [Bassili, 1978], and b) dynamic cues (e.g. facial ex-

pressions) are computed separately from static cues (e.g. facial proportions) [Humphreys et al., 1993].

This dataset consists of 66 image sequences of 3 persons (one of which was female) showing the 23

AUs that the system presented in this paper is able to recognise. The utilised sequences are from

the MMI facial expression database (posed expressions) [Pantic et al., 2005b] and they have not been

used to train and test the performance of the other parts of the AU analysis system.
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Each of these image sequences is annotated (semi-) automatically in two steps. First, the facial point

detector described in chapter 4 is used to initialise 20 facial characteristic points in the first frame.

Then, these points were tracked in the rest of the sequence by means of the Auxiliary Particle Filtering

algorithm as explained in [Pitt and Shephard, 1999]. The positions of the automatically detected

points were inspected by a human and, if necessary, corrected. Similarly, the obtained tracking data

were inspected by a human and, if necessary, repeated using slightly different initialisation parameters

to remove any tracking errors.

Finally, the data was registered using exactly the same procedure that is applied to register the

data used for testing and training the system. In our experiments, this registered data forms the

collection of training data hj in eq. (5.9). Consequently, in our study, the function q(sk) is the identity

transformation.

The PFFL tracker returns for every image sequence a point matrix P with dimensions l × 20 × 2,

where l is the number of frames of the input image sequence.

5.2 Registration of tracking data

There are two registration problems that we have to address in order to be able to compare tracking

data obtained for different face videos. The first issue is that we need to be able to differentiate

between movement of the facial points due to motion of the head with respect to the camera (rigid

head motion) and movement of facial points due to facial expressions. We must transform the tracking

data of a video such that all rigid head motion (both translation and rotation) is cancelled. This is

called intra-sequence registration, as this registration is done with respect to the position of the points

found in the first frame of the input image sequence.

The other registration process addresses the problem that different people have different faces, with

different dimensions, and that the face might be positioned each time differently in the first frame. We

use a pre-defined, so-called normal face with respect to which all other faces are registered. This way,

the facial points found in the first frame of a neutral face of every image sequence will be comparably

positioned (i.e. on a fixed set of points in the point space). As this registration process is done between

different image sequences, we call it inter-sequence registration.
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5.2.1 Intra-sequence registration

Because in the intra-sequence registration we wish to separate point motion due to rigid head motion

from point motion due to facial expression, we use the tracking data of stable facial points only. Stable

facial points are facial points that do not move due to facial expressions, they will only move due to

rigid head motion. From our 20 facial points (see Fig. 4.1), the inner and outer eye points (the points

A, A1, B, and B1) are stable. Another stable point is the point just below the nose, on the philtrum.

However, we cannot track this point due to frequent self occlusion by the nose. Therefore we instead

use the mean of the points H and H1 to approximate the position of this fifth stable point. We

denote this set of facial points by PS . Now we can apply a simple transformation TA(PS , t), an affine

transformation without shearing, computed for each frame t by comparing the positions of the five

stable points PS at time t with their position at time t = 1, the first frame.

5.2.2 Inter-sequence registration

Different people have different faces. Some are long and square corners, others are small and round.

The location of the face in the scene may vary from recording to recording, too. To overcome the related

problems, all image sequences are registered with respect to a predefined face shape and location. This

inter-registration process is also carried out by an affine transformation. Under the assumption that

all image sequences begin with a neutral facial expression, for each new image sequence an affine

transform TE(P ) is computed by comparing the position of the facial points in the first (neutral)

frame with these positions of the points in the predefined normal face2. This transform is the same

for all frames in a sequence, as it only takes into account the shape of the face and the initial position

of the face. Any subsequent rigid head motion is taken care of by the intra-sequence registration

process described above.

We can now compute the values of the registered points Pr as:

Pr(t) = TE(TA(P, t)) (5.10)

2In fact, any frame that displays a neutral face could be used. We only need to know in advance which frame is
neutral. Finding that frame automatically would be a study on its own.
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Figure 5.3: Noise reduction by applying a temporal filter to two features relevant for detection of
Action Unit 1 (inner brow raise). The x axis represents the x-position of point D (right inner brow)
and the y-axis represents its y-position. Circles are examples from frames where the AU was not
active, squares are from frames where the AU was at its peak. The left figure shows the unfiltered
features, while the right figure clearly shows a reduction in noise and clearer spatio-temporal patterns.

5.2.3 Smoothing the tracking data

The tracked points returned by the PFFL tracker contain some random noise around their true

position. This is characteristic for particle filtering. Therefore, we apply a temporal smoothing filter

on this tracked and registered data Pr to arrive at a feature set P ′ that contains less noise:

p′

i(t) =
1

2ws + 1

t+ws
∑

t−ws

pr
i (t) (5.11)

where t denotes the frame number and p′ and pr are elements of the collections P ′ and Pr, respectively.

The window sidelobe size ws to which we apply the temporal smoothing (i.e., the number of frames

left and right of the centre of the window) was chosen after visual inspection of the smoothed tracker’s

output. For the experiments discussed in this thesis, ws = 1 has been chosen. Figure 5.3 clearly shows

the noise reduction achieved by applying the temporal filter.
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5.3 Mid-level parameter extraction

The registration and smoothing pre-processing steps return for every image sequence a set of points

P ′, with dimensions l × 20 × 2, where l is the number of frames of the input image sequence. From

this tracking data, we will compute three different feature sets FS , FD and FW .

5.3.1 Single frame based features

a The most basic features that can be computed from the tracked point information are the positions

of the points and the distances between points. We also compute the angles that the line connecting

two points makes with the line y = 0 (the horizontal axis). As the faces are already registered before

we compute the features, all points in a neutral face should be more or less at the same position for

each subject. When a facial point moves, it will be found in some areas typical for that AU. For

instance, when someone smiles (AU12) we can expect point I (the right mouth corner) to be found in

an area above and to the right of the area where we can expect the point in its neutral state. Thus

we can expect to be able to recognise facial actions using these features.

For each point pi, where i = [1 : 20], the first two features are simply its x and y position. We compute

the features f1 and f2 for every frame t:

f1(pi, t) = pi,x,t (5.12)

f2(pi, t) = pi,y,t (5.13)

For all pairs of points pi, pj, i 6= j we compute in each frame two features:

f3(pi,pj, t) = ‖pi,t − pj,t‖ (5.14)

f4(pi,pj, t) = arctan

(

pi,y,t − pj,y,t

pi,x,t − pj,x,t

)

(5.15)

where arctan is the modified inverse tangent function that corrects for the quadrant a point is in (i.e.

solves the arctangent problem). Feature f3 describes the distances between two points pi and pj, and
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feature f4 describes the angle that the line connecting pi with pj makes with the horizontal axis. The

features f1 and f2 are computed for all points piǫP
′, while the features f3, and f4 are computed for

all possible combinations of points (190 combinations in our case).

The collection of features < f1 . . . f4 > constitutes the set of single frame based features FS with

dimensionality DFS
= 2 × 20 + 2 × 190 = 420. All features in this set are computed using only one

frame; the frame t for which the features are calculated. This means that the set FS is purely static

and captures no temporal dynamics whatsoever.

5.3.2 Inter frame based features

The features < f1 . . . f4 > contain only the information about the positions of the points, the distances

between them and the angles they make with the horizontal at the current instance in time. No

information about the relation of these measurements to their values in a frame displaying a neutral

expression is encoded. Neither do they encode any information about the rate of change of the values of

these features in consecutive frames (e.g. the speed of a point). To capture this temporal information,

we create a new set of features based on the single frame based features described above.

First, we compute features that describe how much the feature values have changed, relative to their

value at the neutral frame, that is, the frame in which no facial expression is shown. In theory this

could be any frame, but for now we will assume that this is the first frame of an image sequence. We

do so using the difference function κ(x, t):

κ(x, t) = xt − x1 (5.16)

where x is a time sequence and xt its value at time t. Using this definition we compute the following

features:

< f5(t) . . . f8(t) >=< δ(f1, t) . . . δ(f4, t) > (5.17)

And to determine the rate of change of the feature values at a given time instance t, we compute their

first derivative with respect to time. Because we are working with discrete data, this becomes:
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d(x, t)

dt
= v(xt − xt−1) (5.18)

where v is the framerate of the corresponding recording and we use this definition to compute the

features:

< f9(t) . . . f12(t) >=< d(f1, t)/dt . . . d(f4, t)/dt > (5.19)

This results in a feature set FD =< f5 . . . f12 > with dimensionalityDFD
= 2×(2×20+2×190)) = 840.

The feature set FD compares the change in feature values between the current frame and a single

previous frame. This means that the set captures some of the temporal dynamics of the facial point

motion.

5.3.3 Local time parameterised features

The time instance based feature set FS is computed using the tracking information of one frame

(features f1 . . . f4) or at most two frames (features f5 . . . f12). As such, their temporal scope is limited.

Not only does this mean that it is hard to model dynamics of facial actions on longer time scales, but

it also makes the system very sensitive to inaccuracies of the tracker that escaped the correction by

the smoothing process (see section 5.2.3 above). An error in a single time instance will likely result in

an outlier in our data representation. This, in turn, will lead to lower classification accuracy.

A second problem with the instance based features is that they fail to capture enough information

about the evolution of the facial point motion over a longer period of time. We believe this information

can be very useful for AU detection. It can encode whether a point is moving up for a number of

consecutive frames, or is remaining at the same location for a period of time. We believe it can be of

special importance for the next stage: the detection of the temporal segments of AUs, because it can

encode very well the shape of the path of a point when an AU changes from a neutral phase (points

remain at the same place) to an onset phase (points are moving away from their neutral position).

Therefore we propose to describe the path of the features in a time window of duration Tw frames with

a pw-th order polynomial. We choose Tw and pw such that with a given framerate we can accurately

describe the feature-path shape in the fastest facial AU (AU45, a blink). For our data, recorded at 25

or 30 frames per second, this results in Tw = 7 and pw = 2.
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Thus, we create a new feature set FW by computing the mid-level parameters f13 . . . f24. These are

found to be the values that make the following polynomial fit best:

fk = f3k+10t
2 + f3k+11t+ f3k+12, k ∈ [1 . . . 4] (5.20)

Thus, the features f13, f14 and f15 are found for k = 1 as the parameters that fit the polynomial

f1 = f13t
2 + f14t + f15 best. This results in a feature set FW =< f13 . . . f24 > with dimensionality

DFW
= 3 ×DFS

= 1260.

In chapter 6 we will perform an extensive evaluation on the three sets of features. We will look at the

importance of the sets, both separately and combined, for the recognition of AU activation and for

the recognition of the temporal segments of AUs.



Chapter 6

Action Unit activation detection

In the following two chapters we will present our proposed AU recognition system. The system consists

of two major consecutive parts, each described in a separate chapter. The first part is the AU activation

detection system, which we will describe in this chapter. This part determines for each frame whether

an AU is present as well as whether that AU was active during an entire image sequence (AU event

detection). The second part, described in chapter 7, relates to the analysis of AU temporal dynamics

and determines exactly when an AU begins (onset), when it reaches a peak(s) (apex), when it starts

diminishing again (offset) and when it returns to its neutral phase (neutral). We will also refer to this

as onset-apex-offset detection. An improved event detection method, based on the temporal analysis

of AUs, is presented in chapter 7 as well. Figure 6.1 gives an outline of the final fully automatic system

that combines all the system elements described in chapters 4 to 7.

The AU activation detection and AU temporal analysis parts are independent components. When we

combine all system components into a fully automated system, however, the AU activation detection

sub-system will only call the AU temporal analysis sub-system for AUs that were determined to be

active in that particular image sequence. This reduces the computational complexity of the system.

But first some words on the way we measure the performance of our system in this chapter and the

next, and the way our evaluation procedures are carried out.

82
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Figure 6.1: Overview of the fully automatic AU analysis system.

6.1 Performance measures

In this work we will carry out a number of evaluation studies. Here we introduce the four performance

measures that we will use in these studies. The four measures that we will use are the classification rate

(cr), recall rate (rr), precision rate (pr) and the F1-measure (φ1, a special case of the F-measure that

favours recall and precision equally). These measures are defined as follows. Let us define the number

of negative examples in the test set as nn and the number of positive examples in the test set as np.

Now let us denote the number of examples classified correctly as negative by mtn, (true negatives), the

number of examples incorrectly classified as negative by mfn (false negatives), the number of examples

correctly classified as positive by mtp (true positives) and the number of examples incorrectly classified

as positive by mfp (false positives).

The classification rate cr measures the overall fraction of correctly classified examples. It is the most

intuitive and most (mis)used performance measure. It is defined as:

cr =
mtp +mtn

np + nn
(6.1)
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The classification rate is only a useful measure when the test set is balanced: that is, when the

sample size of the positive examples is approximately as big as the sample size of negative examples

[Sokolova et al., 2006]. Given an unbalanced test set, cr will give a misleading perception of perfor-

mance. For example, let us take a test set with nn = 990 and np = 10. A classifier that would decide

that every example presented to it is negative would achieve a classification rate of 0.99, which is

nearly perfect, one would be tempted to say. However it is clear that this is not to be considered

desired classifier behaviour.

Therefore we introduce the recall and precision rates. The recall rate rr is a measure of how many

elements of one class (usually denoted as the positive class) are retrieved by the classifier. In short, it

tells us what chance there is that a positive test example will be recognised as such by the classification

algorithm. It is used frequently in situations where the data is very unbalanced, as is the case with

AU detection. It is defined as the fraction of the true positives over the number of positive examples

in the test set:

rr =
mtp

np
(6.2)

Still, given an unbalanced test set, we could obtain a classification performance that results in a very

high, even perfect, recall, but which is still useless in practice. As a simple intuitive example, take a

classifier which predicts all test examples as positive. In this case mtp = np and thus rr = 1. However,

it is obvious that such a system would not be of any use to us either. Therefore the precision was

introduced.

The precision is a measure that tells us how certain we can be that an example that was classified as

positive is indeed a positive example. It is defined as:

pr =
mtp

mtp +mfp

(6.3)

Now we have two measures that together give a good indication of the classifier performance. However,

it is hard to compare two systems, or the same system trained with slightly different parameters, using

two different performance measures. Sometimes the recall will increase, while precision will decrease

when we modify a system parameter (or vice versa), and it is therefore hard to tell for which parameters

the system performs better.
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To solve this problem, the F-measure was introduced. This measure computes a single performance

value based on both the system’s recall and precision. The general F-measure formulation allows us

to set a parameter αr to indicate whether we prefer recall over precision. It is defined as follows:

φ =
(1 + αr)prrr
αpr + rr

(6.4)

As we do not have a preference for either the precision or recall at this point we use a special case

of the F-measure called the F1-measure φ1. This is a measure of performance that values recall as

important as precision, i.e. αr = 1, and is computed as follows:

φ1 =
2prrr
pr + rr

(6.5)

It is this measure that we will use to compare various variants of our proposed system and to optimise

for a given parameter. However, to allow a greater insight in the performance of the proposed prototype

systems, we will at times provide the other three measures (i.e. classification rate, recall and precision)

as well.

6.2 Evaluation procedures

Even though the MMI facial expression database contains the largest amount of single AU activation

facial expressions currently available in the world, we still have preciously little data. We will show

in section 6.4.1 that adding more data to our training set would increase the accuracy of our system.

Because of this, we use n-fold cross validation to evaluate our algorithms. With n-fold cross-validation

we partition the dataset in n parts and have n evaluation rounds. In each round, one part is left out

of the training set. The classifier is trained on all other parts and tested on the part that was left

out. This way, we test on each datum exactly once. Results are reported as the performance measure

averaged over the n folds.

As stated above, we have preciously little data. To be able to use as much of this data as possible

for training of our systems, we want to choose a large value for n. This results in small individual

partition sizes, and consequently in a great amount of data to train the classifier on. The downside of

having a large n is that the evaluation takes a long time. We have to train the classifier n times, and
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a large n means a large training set which in turn means longer training times.

Another related issue is the way in which the data is partitioned. It has been shown that person-

dependent systems, where data from a subject are present in both the training set and the test

set, outperform person-independent systems [Cohen et al., 2002]. However, the system we intend to

build should be able to recognise expressions of any person, including people who were not encountered

previously. To report on person-independent system performance, it is important to partition the data

in such a way that there are no data from one subject in both the training and the test set. Keeping

in mind the scarcity of our data, we thus partition our dataset into the maximum n possible subsets,

where n is the number of subjects in the dataset. Note that the partitions may have varying sizes, as

our data contain more examples of some subjects than of others. We call this leave-one-subject-out

cross-validation.

As we will see later, the classifiers that we will use have a small number of parameters to set while

training the classifier. Of course, we want to find the optimal parameters for our problem in terms

of classification performance. It is important, therefore, that the parameter optimisation process is

done completely independently of the test set. Otherwise, our results will seem overly optimistic (see

[Wessels et al., 2005]). We therefore employ a separate 3-fold cross validation loop each time we train

a classifier in which we search for the optimal parameter. The training data is split in three subsets,

two of which are used to train a classifier and the third is used to test the classifier. We evaluate the

classifier performance for different values of a parameter, using gradient descent to quickly converge

to the parameter for which the optimal results are achieved. We repeat this process for each of the

three folds, usually resulting in a slightly different value of the parameter for which performance was

maximum. The final chosen parameter value is the average over the values found for the three folds.

Parameters are assumed independent and there is no specific order in which the various parameters

are optimised. In all the reported evaluation studies in this chapter we optimise for all unknown

parameters in this way.

Finally, we should say something about the statistical significance of our results. As Mitchell explains

[Mitchell, 1997], in order to use the t-test or to compute the standard deviation of our outcomes, we

need a sample size of at least 30 independently identically distributed (i.i.d.) examples in each test

set. As the frames within one video are highly correlated, this means that we theoretically have as

many samples as we have videos. To make things worse, for computing the recall and precision, only

the true positive examples count. As we will see, given the size of our dataset we do not even come
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close to the required 30 i.i.d. test examples when computing recall or precision. Often we only have

1 or 2 positive examples in the test set. What this means is that we cannot give standard deviations

or perform t-tests on the recall and precision rates, but only on the classification rate.

6.3 Action Unit activation detection

Our proposed method for the recognition of AUs within an image sequence is a three-step process.

First, we use the GentleBoost algorithm to select the most informative features, thus reducing the

problem space which in turn increases the classification accuracy [Bartlett et al., 2004]. Next we use

Support Vector Machines (SVMs) to score AUs on a frame-by-frame basis, using the selected features

only. Finally, based on this frame-based AU activation detection, we decide whether a particular AU

is shown in the input image sequence or not. This last step is called AU event-detection, and it is

done using an adaptive threshold that counts the number of active frames in an image sequence.

6.3.1 Feature Selection

Although SVM classifiers are able to learn a classification function very well even with very little

training data, classification performance decreases when the dimensionality of the training set is too

large. To be more precise, if we have a training set D with nf features and ns instances, then if

nf > ns, it is possible to uniquely describe every example in the training set by a specific set of feature

values [Vapnik, 1995]. Our training set typically consists of some 250 examples (image sequences) of

which as few as 6 are from the class we wish to detect (positive examples) while all other examples

are from non-target classes (negative examples). Considering the fact that the dimensionalities of our

feature sets, DFS
, DFD

and DFW
, are 420, 840 and 1260 (see section5.3), respectively, we are indeed in

danger of over-fitting to the training set. One way to overcome this problem is to reduce the number

of features used to train the SVM using feature selection algorithms.

Boosting algorithms such as GentleBoost or AdaBoost are not only fast classifiers, they are also

excellent feature selection techniques. Bartlett et al. [Bartlett et al., 2004] reported that SVMs trained

on a subset of features selected by a boosting algorithm perform significantly better. They also showed

that not all feature selection techniques are suitable for use with SVMs. For instance, the use of PCA as

a feature selector for SVMs was even shown to have a decremental effect to the final SVM classification
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performance.

In our study we use the GentleBoost algorithm as a feature selector preceding a SVM classifier. The

performance of GentleBoost is reportedly better than that of AdaBoost, both in convergence time and

classification accuracy [Torralba et al., 2004, Lienhart et al., 2003]. An early-stage empirical study

confirmed this for our problem. We evaluated the performance increase on 153 examples taken from

the Cohn-Kanade Database. There was an 18.9% increase in recall when we used Gentle-SVMs

compared to conventional SVMs.

In feature selection by GentleBoost, at each stage a weak classifier is trained on a subset of the data

consisting of a single feature. So, if we combine the three feature sets described in section 5, we have

2520 features, and thus 2520 possible weak classifiers. The nature of boosting techniques such as

GentleBoost or AdaBoost ensures that new features are selected contingent on the features that have

already been selected, eliminating redundant information with each training round.

The feature selection procedure based on a boosting algorithm goes as follows: The algorithm picks the

weak classifier (based on a single feature) that separates the examples of different classes best given the

current sample weights w, and then boosts the weights to weigh the errors more (so-called importance

resampling). The next feature is selected as the one that gives the best weighted performance on the

data set given the updated weights. It can be shown that at each step the chosen feature is highly

uncorrelated with the previously selected features [Friedman et al., 2000]. The difference between

GentleBoost and AdaBoost lies in the reweighting scheme, which is a linear function of the error for

GentleBoost and a half-log function of the error for AdaBoost. Therefore AdaBoost can over-emphasise

the errors. This can lead to lower performance rates, especially on data for which the Bayes error is

significant [Freund and Schapire, 2000]. A formal description of the GentleBoost algorithm has been

given in section 4.4 of this thesis.

The performance measure used by GentleBoost to learn the weak classifiers and evaluate their per-

formance is the classification rate (i.e. fraction of correctly classified examples, regardless of their

class). As stated above, our dataset is extremely unbalanced, with approximately 15 times as many

negative examples as positive examples. Therefore, care must be taken to avoid that GentleBoost

favours correct classification of the negative examples, as this would lead to a system that would be

practically unable to detect positive examples1. The solution lies in the way the boosting algorithm

evaluates its performance in every round eq.(4.10).

1In other words, the system would have a very low recall.
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Let us denote with Ip the indices of the positive examples and with In the indices of the negative

examples in our data set. Let the weights of positive examples be denoted as wp = w(Ip) and the

weights of negative examples as wn = w(In). Now we initialise w in such a way that
∑

wp = 0.5

and
∑

wn = 0.5 and thus
∑

w = 1. We call this equal-class weighting, as opposed to giving each

training example the same weight, which we call equal-instance weighting. Moreover, we insist that in

the first round of boosting, (∀i, j ∈ Ip) wi = wj and (∀i, j ∈ In) wi = wj . Using this initialisation of

the weights, we ensure that GentleBoost endeavours to have an equal error on the positive examples

and on the negative examples.

To evaluate the effect of initialising GentleBoost with equal-class weighting, we performed two AU-

activation detection tests: In the first test we initialise GentleBoost using equal weights for all examples

(standard initialisation with equal instance weighting). In the second test we initialise GentleBoost

using equal-class weighting. To reduce the amount of time needed to evaluate the effect of using

equal-class or equal-instance weighting, the performance was measured on a subset of 10 AUs: AU1,

AU2, AU4, AU5, AU9, AU12, AU15, AU18, AU20 and AU22. This set of AUs was chosen to reflect

a wide range of AUs. It consists of both upper-face, lower-face and ‘miscellaneous‘ AUs and some of

the AUs are very easy to recognise (e.g. AU2) and others very difficult (e.g. AU15). We will use this

set for more tests and will refer to it as the evaluation data set. For each AU, we used half of the data

to train GentleBoost and the other half to test it. Figure 6.2 shows the results of this test, which are

explained in greater detail below.

As we can see from Fig. 6.2, it is very important to use the appropriate performance measure. If we

would only regard the classification rate, we would incorrectly conclude that equal-instance weighting

provides optimal results. The figure also shows that the performance measured on the training data is

misleading. The bottom-right figure finally shows us that the F1-measure on the test data is actually

greatest when we use equal-class weighting.

Figure 6.2 also points out another long-debated [Freund and Schapire, 1999, Jiang, 2004] issue of train-

ing boosting classifiers. As the lower-right graph clearly shows, on our data GentleBoost is prone to

overtraining. The figure shows us that, to obtain the best results, the algorithm should have stopped

training after 8 rounds. Unfortunately, there is no way for us to know a priori after how many rounds

training should be stopped. We investigated the issue further by forcing the boosting algorithm to

finish after a fixed number of rounds (early stopping), and by subsequently using only those selected

features in the full frame-by-frame AU-activation detection system described in the following sections.
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Figure 6.2: Performance of GentleBoost with different initialisations of the weights, measured in
classification rate and F1-measure.
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Figure 6.3: The performance of AU-activation recognition for different fixed numbers of features
selected by GentleBoost.

The results of this 10-fold cross validation test on the evaluation data set are shown in figure 6.3. The

solid line shows the AU-activation detection performance for different early-stopping values while the

dotted line shows the performance for AU-activation detection using feature selection without early

stopping. The figure seems to indicate that some overfitting does occur, which is in agreement with

the findings reported in [Jiang, 2004]. The figure shows that an optimal number of boosting rounds

exists and thus that early stopping could be beneficial to classifier performance. Yet the difference

between this optimal performance and the performance without early stopping is smaller than one

might expect from inspection of figure 6.2.

This optimal number of rounds depends on many factors, such as the definition of the features, the

amount of training data, and the amount of noise introduced by the (sub)systems. Finding this optimal

value would require a separate cross validation loop each time a classifier is trained. Therefore, taking

into account that the performance increase is very small, we decided not to perform early stopping in

our systems.
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6.3.2 Support Vector Machine Classification

Support Vector Machines (SVMs) have proved to be very well suited for classification tasks such as

facial expression recognition because, in general, the high dimensionality of the input feature space does

not affect the training time, which depends only on the number of training examples [Vapnik, 1995].

They are non-linear, generalise very well and have a well-founded mathematical basis. The essence of

SVMs can be summarised as follows: maximising the hyperplane margin, mapping the input space to

a (hopefully) linearly separable feature space and applying the ‘kernel trick’ to efficiently solve the first

two steps, by implicitly mapping the samples to hyperspace when computing the distance between

two examples.

Maximising the margin of the separating hyperplane h results in a high generalisation ability. To

achieve this, one has to find the examples that span the hyperplane (the support vectors, SVs) that

maximises the distance between the SVs and h. This involves finding the nonzero solutions of the

instance weights γi of the Lagrangian dual problem [Vapnik, 1995]. This dual problem is a quadratic

programming problem which can be solved efficiently. The instance weights γi are mostly zero. The

examples for which γi is not zero are exactly the SVs and this sparse set of vectors is the only part

of the training data that has to be stored to define the trained classifier. Generally speaking, a very

sparse set of SVs means high generalisation power.

Having found the support vector weights γi and given a labelled training set {x,y} of features x and

class labels y, the decision function in input space is:

f (x) = sgn

(

l
∑

i=1

γiyi 〈x,xi〉 + b

)

(6.6)

where b is the bias of the hyperplane, 〈x,xi〉 is the inner product of the test example x and the ith

training example xi with corresponding class label yi, and l is the training sample size. The function

sgn(y) returns the sign of y, i.e. either -1 or 1.

Equation (6.6) is a linear decision function. Of course, most real-world problems are not linearly

separable in input space. To overcome this problem, we map each input sample xi to its representation

in the feature space: Φ (xi). In this space we hope that the decision function is linear, so we can apply

our algorithm for finding the maximal margin hyperplane in it. This requires the computation of

the dot product 〈Φ(x) ,Φ(xi)〉 in feature space, which is a high-dimensional space. These expensive
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calculations are reduced significantly by using a Mercer kernel K. These kernels have the property

〈Φ(x) ,Φ(xi)〉 = K (x,xi) (6.7)

To find the non-linear decision function for f(x) that defines h, we apply our decision function (6.6)

directly on Φ (x). Substituting the inner product in equation (6.6) with the Mercer kernel (6.7), the

decision function directly becomes:

f (x) = sgn

(

m
∑

i=1

yiγiK (x,xi) + b

)

(6.8)

In many of the studies presented in this thesis, we will use a combination of GentleBoost fea-

ture selection and SVM classification. For this combination the term gentleSvm was coined by

[Bartlett et al., 2004].

6.3.3 Cascade Support Vector Machines

Although from an AU event detection point of view we only have around 250 examples in our training

set (i.e. 250 image sequences), the gentleSvm system we propose recognises AUs in each frame sepa-

rately. As such, it uses each frame as a training instance, instead of an entire image sequence. With a

typical image sequence length of a hundred frames, this means we have in the order of ns = 2.5× 104

training examples to deal with.

Theoretically, SVM training time scales as n3
s. However, most SVM implementations use Sequential

Minimal Optimisation [Cristianini and Shawe-Taylor, 2000], a quadratic programming solution algo-

rithm, which reduces the training time required to approximately n2
s. Nonetheless, that amount of

training time is still problematic, especially if we keep expanding our training set. Another problem

that we encountered when training our system relates to memory requirements. Although a trained

SVM only retains training examples for which γi 6= 0, it still needs to load all the training examples

in order to train the system. Both problems need to be addressed to be able to evaluate our proposed

AU recognition system and to train our final feed-forward AU detector. After testing various data

reduction techniques2, we decided to use Cascade SVMs [Graf et al., 2004].

2Unfortunately, due to a lack of space we will not divulge here on the matter
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Figure 6.4: Schematical overview of the Cascade SVM

Cascade-SVMs were proposed by a group led by Vapnik, the creator of the original SVM. The system

is schematically shown in Fig. 6.4. A cascade SVM with nc cascades has nc + 1 layers and splits the

training set that serves as input to the SVMs of the first layer in 2nc parts. When the cascade-SVM

is trained for the first time, the first layer is trained using the split training set only. In the second

layer and beyond, each SVM is trained using the Support Vectors found by its two parent SVMs. This

continues until we reach the final layer.

The number of cascades nc to use is the most important model parameter. Figure 6.5 shows us

that we have to make a trade-off between the classifier accuracy on the one hand and the training

time/memory requirements on the other. Considering the specifications of our lab computers and the

size of our dataset, we set nc = 2. This means that our training data is split in 4 equally sized parts.

In this setup the training data just fits in the machine memory, as we only need a quarter of the

original memory requirements. In a worst case scenario, that is, if each SVM in every layer would

select all training examples to be used as support vectors, training time would actually increase and

we would have no relaxed memory requirements (the final layer would ultimately train on the original

training set). This is of course not a realistic scenario and in practice we observed an almost 4-fold
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Figure 6.5: Effect of the number of cascade loops on the classification performance.

speeding up of the training algorithm, and memory usage never exceeded that required to train the

first layer.

If we would traverse this cascade only once, convergence with the optimal SVM (optimal in terms of

classification accuracy; the case where we do not use Cascade-SVM and train only one SVM using

all data) is not guaranteed. Intuitively we can see this because some training data passed in to

the third SVM of the input layer might not be found to be Support Vectors, while they could have

been selected if they were presented to an SVM together with the data of the first SVM. Therefore

we use a feedback loop, where we add the Support Vectors selected by the final layer to each of

the training data parts that were used to train the first layer and we traverse the cascade again.

Graf et al. [Graf et al., 2004] have proven that in this way, the cascade-SVM will eventually converge

with the optimal SVM. However, it remains unclear how many feedback rounds would be necessary.

Also, [Graf et al., 2004] showed that often the feedback rounds were not necessary at all and that the

cascade-SVM was trained optimally in the first round. To see how many feedback loops we needed,

we performed a test on the evaluation data set. The results are shown in figure 6.6. As we can see,

the number of feedback loops used does not significantly impact the classification results. We decided

to use two feedback loops, because the mean F1-measure was highest for this value.

Each SVM in the first layer of a cascade-SVM is trained with a maximum of ns/2
nc samples and it is

reasonable to expect that any SVM will select fewer than half of its input data as SVs. As only one

SVM needs to be trained at any time, the memory requirements advantage is evident. The training
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Figure 6.6: Effect of the number of feedback loops on the classification performance.

time advantage is less evident, as it depends on the number of Support Vectors that survive after

each layer and the number of iterations for which the cascade-SVM is trained. However, as stated

above we observed about a fourfold reduction in training time with two cascades. Also, the cascade-

SVM architecture allows for distributed computing, as SVMs could be trained in parallel on different

machines.

6.4 Evaluation of AU activation detection

6.4.1 Frame-based AU detection results

We performed four studies to evaluate the performance of our frame-based AU activation detection

approach. In the first study, we evaluate the information contained in the various feature sets, FS ,

FD and FW , defined in section 5.3. Based on this study we decided which features to use for all

other tests. The other two studies are a complete leave-one-subject-out cross-validation studies on

244 sequences from the MMI-Facial Expression Database and 153 sequences from the Cohn-Kanade

database, respectively. These studies provide a good indication of how well the system can perform

when it is trained for a specific application. It is also a reasonable way to compare the performance of

our system to that of other systems presented in the literature. The fourth study investigates how well

our method is able to generalise with respect to completely novel data, recorded under very different

conditions. We train our system using the data from the MMI-Facial Expression Database (the set
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Feature sets Cl. Rate F1-measure

FS 0.952 0.381
FD 0.958 0.447
FW 0.951 0.395

{FS , FD} 0.959 0.449
{FS , FW } 0.951 0.396
{FD, FW } 0.953 0.438

{FS , FD, FW } 0.956 0.467

Table 6.1: Performance of frame-based AU activation detection for various feature sets on MMI
database.

used in the first study) and test it on data from the Cohn-Kanade Database (the set used in the second

study), and vice versa.

Feature set evaluation

In section 5.3 we introduced three different sets of features: the purely static feature set FS , the

feature set based on differences between two frames FD and the local time parameterised feature set

FW . We want to know the relative importance of these feature sets to the problem of AU activation

detection. Therefore we have performed seven 10-fold cross validation studies on the evaluation data

set, one for each possible combination of feature sets. We used a cascade-SVM with 2 cascades and

used GentleBoost as a feature selector. Performance was measured per frame, i.e. we counted correctly

classified frames. The results are shown in table 6.1.

As pointed out earlier, the classification rate does not provide much insight. The F1-measure φ1

however, does indicate some important points. As was expected, the purely static feature set FS

performs worst. The set of local time parameterised features FW performs only marginally better.

When combining FW with either FS or FD, no improvement is noticed either. But when combined

with both FS and FD the best results are obtained. However, the power of FW lies in describing local

time-variations in the positions and velocities of points or in the distances between points. This is

probably of greater importance to the recognition of the temporal phases of AUs, where the changes

between phases are signified by these local time-variations, than to the activation detection of AUs.

In section 7 we will measure the performance on temporal segment detection and we expect to see a

greater influence of the local time parameterised feature set FW .

The best performing feature set is the double-frame based feature set FD, which captures both the

speed of points and the deviation in location and distances between points relative to a neutral frame.
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It achieves a φ1 of 44.7%, compared with a score of 46.7% for all feature sets combined.

To get a deeper understanding of the information contained in each of the feature sets, we also looked

into which features were selected for AU activation detection. Table 6.2 lists for all AUs that we

can detect in the MMI database the four most important features for the problem of AU activation

detection. To make the table entries better readable for humans, we decided not to use the feature

names {f5 . . . f8}, but instead use their functional representations δ(fi, t) and dfi(t)/dt (see section 5.3).

As we can see, the selected features make a lot of sense. For instance, the first feature selected

for activation detection of AU1 – the inner eyebrow raiser – is the distance between the left inner

eye corner and the left inner eyebrow corner. The inner eye corners are stable points, that is, their

position never changes due to facial expressions. As such, they are a very good reference point to

measure distances against. The distance between the inner eye corners and the inner eyebrow corners

is obviously an indication for a brow raiser. For AU12, a smile, the most important feature was found

to be the change in the angle defined by the line connecting the points on the nose and the left mouth

corner and the horizontal line. This again makes a lot of sense, as we expect that when we smile, the

mouth corner moves away from its neutral position in a circular path, with more or less the nose as

the centre of that circle.

As expected, there are very few features selected that encode velocity of acceleration, i.e. time deriva-

tives of features, or the higher order polynomial parameter features. Only 4.7% of the selected features

encoded velocity and 6% acceleration. While not increasing recognition accuracy significantly unless

combined with both FS and FD, the feature set FW still accounts for 21.4% of the selected features.

This, plus the increase in performance when added to FS and FD, leads us to conclude that the Local

Time Parameterisation features (FW features) do have added value to recognise facial expressions.

Also, we see from table 6.2 that the single-frame based features f1 and f2 are hardly ever chosen. To

be more exact, of all features chosen, only 3.5% were FS features denoting either the x- or y-position

of a point. Therefore we conclude that it is very hard to recognise facial expressions based on the

positions of facial points only.

For the remainder of this thesis, we will use the combination of all feature sets, {FS , FD, FW }, as this

achieves the highest possible performance. However, a word of caution is needed here. Computation

of FW is time-consuming, and the increase in performance that it offers might not always warrant

the cost. If a fast, perhaps even real-time, facial expression recognition system is desired then the
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AU Selected Features

1 f3(B1, D1, t) δ(f3(D1, N , t), t) δ(f3(A, M , t), t) δ(f3(D, N , t), t)
2 f3(E1, G1, t) δ(f3(D, D1, t), t) δ(f4(A1, B1, t), t) δ(f4(G, N , t), t)
4 δ(f3(E1, G1, t), t) δ(f3(D, D1, t), t) δ(f3(E, G, t), t) f3(H1, K, t)
5 δ(f3(F, G, t), t) δ(f4(A, G1, t), t) f3(H, N , t) f3(E, F1, t)
6 δ(f4(J, N , t), t) f2(G, t) f3(E, H, t) δ(f3(J, M , t), t)
7 δ(f4(E, G1, t), t) δ(f3(E1, G, t), t) δ(f3(B, N , t), t) δ(f4(B, D, t), t)
9 δ(f4(D1, G, t), t) δ(f3(G, M , t), t) f3(D, N , t) δ(f3(I, L, t), t)
10 δ(f3(K, M , t), t) f4(J, M , t) δ(f4(A1, J , t), t) f4(G1, H1, t)
12 δ(f4(J, N , t), t) f21(A, I, t) f3(A1, D1, t) f4(A, I, t)
13 f4(H, J , t) δ(f3(L, M , t), t) f3(D, G, t) f18(L, t)
15 f4(J, L, t) δ(f4(J, M , t), t) δ(f4(I, L, t), t) f3(B1, I, t)
16 δ(f3(L, N , t), t) f4(B1, K, t) f4(D, D1, t) δ(f3(L, M , t), t)
18 f3(I, J , t) δ(f3(I, K, t), t) f3(D, L, t) f24(G, I, t)
20 δ(f3(I, J , t), t) f3(I, K, t) δ(f3(B1, E1, t) δ(f3(B1, E, t), t)
22 δ(f4(K, J , t), t) f3(B, E1, t) f4(D1, G, t) f21(J, M , t)
24 δ(f3(I, N , t), t) f3(A, A1, t) f4(E1, J , t) δ(f3(B1, D1, t), t)
25 δ(f3(K, L, t), t) f2(L, t) f19(K, L, t) f4(F1, G, t)
26 δ(f3(K, L, t), t) f3(K, N , t) f3(G, N , t) f3(E, H1, t)
27 δ(f3(L, N , t), t) δ(f4(A1, L, t), t) f16(L, t) δ(f3(F, L, t), t)
30 δ(f3(B1, J , t), t) f4(K, L, t) δ(f1(L, t), t) f3(F, H, t)
43 f4(F1, G, t) f3(F, H1, t) f21(D1, F1, t) f21(E, F , t)
45 δ(f4(D1, F , t), t) δ(f3(F, G, t), t) f23(F, D1, t) f20(E1, F1, t)
46 f3(D1, G, t) f3(A1, M , t) δ(f4(F1, H, t), t) f3(A, K, t)

Table 6.2: First four features selected by GentleBoost for the activation detection of AUs in the MMI
database.
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combination of FS and FD only is to be preferred.

Frame-based evaluation on MMI database

We tested our system on the MMI-facial expression database for all AUs that we can detect using a

geometric feature based approach. The set was created so that it includes for every AU at least 15

examples. For AU13 (a smile with the mouth corners sharply pulled upwards) we could find only 14

examples and for AU46 (wink) only 6. This is because these AUs are very difficult to produce on

command.

Some AUs always occur in combination with others. For instance, AU22 which puffs the lips as in

pronouncing the word flirt’, will always cause the lips to part and thus to display AU25. Thus, for

some AUs we have more occurrences than for others. The number of videos in which each AU occurs

is listed in the second column of table 6.3. Because at this point we are detecting AUs per frame, we

have listed the total number of frames in which an AU is active in the third column of table 6.3.

Results are shown in terms of the classification rate cr, the recall rr, the precision pr and the F1-

measure φ1. From the table we can see that there is a large number of AUs that are recognised with

quite a high φ1. AU1, AU2, AU4, AU6, AU13, AU20, AU22, AU27, AU45 and AU46 all have a

φ1 > 0.6, which means that we can expect both a relatively high chance that an active AU is found by

the system, and that we can have some confidence that the AUs returned by the system were actually

present in the input video.

Some of the AUs that did not score very high were AU10, AU15, AU16 and AU26. For AU10 and

AU16, we think the problem lies mainly in the small number of points that define the shape of the

mouth. With only one point for each mouth corner, and one point for the upper and one for the

lower lip, it is impossible to tell whether the upper lip is a straight line or instead curved. The same

holds for the lower lip. As AU10 is caused by muscles that attach halfway between the mouth corner

and the midpoint on the upper lip, and AU16 is caused by muscles that attach on the same vertical

position on the lower lip, it is exactly this information about the curvature of the lips that is needed

to detect AU10 and AU16.

AU15 – lips depressed – is a different case. Although the mouth corners do indeed move down and

out a little bit, the most salient change caused by AU15 activation is not in the displacement of the

mouth corners but in the appearance change of the mouth corners. A distinct edge, running from the
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AU Examples Frames Cl. Rate Recall Precision F1-measure

1 22 1006 0.972 0.679 0.728 0.703
2 25 1092 0.961 0.628 0.629 0.628
4 38 1839 0.942 0.582 0.707 0.639
5 19 874 0.949 0.317 0.375 0.344
6 27 1241 0.952 0.695 0.583 0.634
7 15 772 0.963 0.319 0.510 0.392
9 15 636 0.968 0.503 0.477 0.490
10 17 719 0.955 0.266 0.321 0.291
12 17 1004 0.950 0.548 0.482 0.513
13 14 782 0.974 0.668 0.650 0.659
15 15 854 0.944 0.412 0.344 0.375
16 18 717 0.947 0.230 0.229 0.229
18 16 568 0.974 0.593 0.523 0.556
20 15 871 0.964 0.696 0.554 0.617
22 15 696 0.964 0.536 0.467 0.499
24 15 536 0.955 0.497 0.503 0.500
25 105 5401 0.909 0.810 0.831 0.821
26 32 1597 0.875 0.198 0.179 0.188
27 15 800 0.983 0.720 0.819 0.766
30 15 736 0.972 0.438 0.588 0.502
43 15 750 0.973 0.520 0.657 0.580
45 107 1243 0.956 0.668 0.625 0.645
46 6 130 0.913 0.723 0.667 0.694

Avg: 0.953 0.532 0.541 0.533

Table 6.3: Subject independent cross validation results for AU activation detection per frame on 244
examples from the MMI-Facial Expression Database
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mouth corner outwards and downwards is created when AU15 occurs. This means that an appearance

based method would most likely improve the performance of AU15 activation detection.

AU26 – jaw drop – is a very difficult action to detect for three reasons: firstly, AU26 and AU27 seem

to differ only in the intensity of the jaw drop. In reality, the mechanisms behind the two AUs are quite

distinct: AU26 is primarily caused by relaxation of the masseter muscle, while tensing the digastric

muscle is the main cause for the activation of AU27 by pulling the jawbone down. Unfortunately, by

judging the geometric displacement of the point on the chin only, it is hard to tell when AU26 stops

and AU27 starts. The second difficulty with AU26 is that very often it is caused by a very small

relaxation of the masseter, causing only a very small downward movement of the jawbone. More often

than not, this occurs withouth parting of the lips. Thirdly, the point on the chin is not extremely

well defined, especially on subjects with a lot of fat in their face. This makes the measurement of the

displacement of the chin point difficult and this directly influences the recognition results of AU26.

One has to keep in mind that these results are for frame-by-frame AU activation detection. The

manual AU labelling is very meticulous, even the slightest change in expression triggers the coding of

an AU activation event by a human coder. Often, these expression changes start with a deformation

of the local appearance of a facial feature rather than the movement of the facial feature. It is for this

reason that our system always misses a number of frames in the beginning of a facial action and, for

the same reason, at the end of the facial action. We will see in section 7.3, where we will perform AU

event detection, that results actually look better if we count how many AUs were correctly detected

on a per-video basis.

Frame-based evaluation on Cohn-Kanade database

This third study is performed to enable comparisons with other systems reported in the literature.

Many older works were evaluated on the Cohn-Kanade Database. The Cohn-Kanade database was

recorded for the purpose of basic emotion analysis and therefore only contains a limited number of

AUs, with strong AU co-occurrence correlations. This is because the subjects were instructed to

produce prototypic expressions of basic emotions (see section 3.3).

From this database, we created a dataset that can be used both for AU analysis and for emotion

recognition. Image sequences were included in this set if two expert coders could reach consensus on

the emotion shown. This was sometimes difficult as not all subjects were able to control their face
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AU Examples Frames Cl. Rate Recall Precision F1-measure

1 68 883 0.918 0.808 0.844 0.826
2 50 657 0.939 0.791 0.879 0.833
4 54 857 0.870 0.604 0.658 0.630
5 37 421 0.904 0.566 0.629 0.596
6 39 535 0.930 0.789 0.811 0.800
7 31 415 0.870 0.268 0.315 0.290
9 30 357 0.928 0.676 0.497 0.573
10 26 302 0.914 0.403 0.401 0.402
12 42 727 0.930 0.827 0.844 0.836
15 19 264 0.969 0.500 0.283 0.361
20 34 381 0.908 0.466 0.582 0.517
24 17 297 0.935 0.395 0.497 0.440
25 19 1572 0.851 0.717 0.782 0.748
26 27 344 0.902 0.336 0.380 0.357
27 30 800 0.964 0.836 0.873 0.854
45 23 1243 0.943 0.584 0.408 0.480

Avg: 0.917 0.598 0.605 0.596

Table 6.4: Subject independent cross validation results for AU activation detection per frame on 153
examples from the Cohn-Kanade Database

as desired, making some expressions look like a mix of two or more emotions, for instance, a mix of

happiness and surprise. AUs were again included in the set of target classes if there were at least

15 videos in which they occurred. As the second column of table 6.4 shows, due to the nature of

this database, far fewer different AUs were present in the database recordings but the AUs that were

present occurred in great abundance.

Results were measured in terms of cr, rr, pr and φ1 and are shown in table 6.4. As we can see, the

results for this database are better (an increase in φ1 of 6.6%). This may be due to two issues. Either

the AUs are easier to detect due to the limited variation in the way expressions are displayed, or it is

due to the higher number of examples that are available for each AU. To investigate the effect of the

second issue, we carried out the experiment described in the next section.

Sample size effect

To find out what the effect the number of examples in a dataset has on the performance, we carried

out an experiment. For AU1, we started with a subset of the data containing the minimum number

of examples containing AU1 to perform 10-fold cross-validation on the subset (i.e. 10 examples for

10-fold cross-validation). Then we increased the size of the set by one positive example, and recorded

the performance on this increased set. This was continued until all examples of AU1 were used. We
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Figure 6.7: Evaluation of the effect of the number of positive examples in a dataset.

included all negative instances in each subset. This experiment was carried out on the data from both

the MMI-Facial Expression Database and the Cohn-Kanade database.

The results, shown in figure 6.7, seem to indicate that indeed the sample size is of great importance.

For the Cohn-Kanade Database, a minimum of 35 positive examples seems necessary. After 35 samples,

the performance remains more or less stable. For the MMI facial expression database it is not possible

to make any strong claims, due to the limited number of tests that we could run. Still, the figure

seems to indicate that performance would increase if we would add more positive examples.

Based on these results, we can conclude that the higher recognition accuracy for AU-activation recog-

nition on the Cohn-Kanade database is at least partially due to a larger sample size. It still does not

tell us what effect the low expression variability has, but we will learn more about that in the next

section.

Cross-database evaluation

A cross-validation study on data from a single database might have very good results, but it does not

guarantee that the evaluated system performs well on truly novel data. In a sense, the only way to

test whether a system performs well in the real world is to put it out there. However, this goes beyond

our means. What we can do is test the generalisability of a system by training it on data from one

database and test it on data from a second database. Both databases must be recorded completely

independently of each other. That exactly is the case for the MMI-Facial Expression Database and

the Cohn-Kanade Database.
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Frame-based Event-based

AU Train MMI Train Cohn-Kanade Train MMI Train Cohn-Kanade

1 0.454 0.368 0.661 0.255
2 0.433 0.389 0.762 0.467
4 0.421 0.411 0.541 0.414
5 0.366 0.262 0.447 0.149
6 0.475 0.592 0.429 0.571
7 0.073 0.032 0.129 0.211
9 0.472 0.552 0.495 0.286
10 0.175 0.114 0.232 0.109
12 0.190 0.499 0.635 0.400
15 0.248 0.180 0.372 0.229
20 0.240 0.323 0.277 0.341
24 0.182 0.198 0.333 0.292
25 0.770 0.646 0.799 0.746
26 0.278 0.155 0.293 0.203
27 0.398 0.546 0.589 0.591
45 0.308 0.308 0.442 0.622

Avg: 0.343 0.348 0.465 0.368

Table 6.5: F1-measure for cross-database AU detection per frame (second and third column) and
per video (last two columns). The system was either trained on 244 examples from the MMI-Facial
Expression Database and tested on 153 examples from the Cohn-Kanade Database or trained on
Cohn-Kanade and tested on MMI.

The MMI-Facial Expression Database and the Cohn-Kanade database were recorded for different

purposes. The MMI database was recorded for the purpose of research on atomic facial actions and

includes, therefore, displays of singular and combined AU activations for all existing AUs3. The

Cohn-Kanade database on the other hand was recorded to perform research on emotion recognition

and no effort was made to capture singular AU activations of all AUs. As such, the AU distributions

differ widely between the two databases and we could only test on AUs that were present in sufficient

numbers in both sets.

We performed two tests: In the first test, we train the AU detector on all data from the MMI database

and test it on data from the Cohn-Kanade database. Vice versa, in the second test we train on the

Cohn-Kanade database and test on the MMI database. The results, measured in φ1, are shown in

table 6.5.

The results in table 6.5 are grouped in two: a set of frame-based results and a group of event-based

results. The latter determines whether an AU was activated during an entire video. In this case, a

video was considered to contain an AU if at least one frame was detected as active. This is a good

3Note that though all AUs appear in the database, though not all possible AU combinations. This would have been
a great feat indeed!
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enough criterium for now, just to compare the two systems. Further on in this thesis we will explore

other, more successful event detection methods.

The difference between frame-based and event-based results is important here, because the two

databases are so different. The Cohn-Kanade database contains almost only neutral frames and

frames in which the expression is going from neutral to its peak and hardly any in which the expres-

sion actually is at its peak. The MMI database on the other hand contains a well balanced number of

all possible temporal phases of a facial action. To wit, the Cohn-Kanade data has a much lower ratio

of high-intensity vs low-intensity frames. As the low-intensity AU activations are harder to detect

than high-intensity AU activations, an AU detector will have a lower frame-based detection accuracy

compared to a dataset where the ratio of high- vs. low-intensity frames is more balanced. This is why

the frame-based results for the system trained on the Cohn-Kanade data seems so high, compared

to that trained on MMI data. First of all, there are more frames with a high intensity in the MMI

database to be detected by the Cohn-Kanade system, resulting in a relatively high performance. On

the other hand, there are few high-intensity frames in the Cohn-Kanade data, resulting in a relatively

low performance on frame-level for the MMI-system.

The results are more comparable at the event-based level. When we examine these, we see that the

performance of the MMI-trained system is almost 10% higher than that of the Cohn-Kanade trained

system. We believe that this is due to the low variability of facial expressions in the latter database.

The results are even graver when we consider the effect of the sample size, examined in section 6.4.1.

This should give the Cohn-Kanade system an edge over the MMI-trained system. Instead, it performs

worse, probably because it expects AUs to be produced in combination with a number of other AUs,

resulting in low generalisation to novel expressions. On the other hand, we see that the MMI-trained

system generalises very reasonably on data from a completely different database.

This answers our question posed in section 6.4.1. It is both due to the large samplesize and due to

the limited variation in the way the emotive expressions are displayed that AU activation detection

results are higher for the cross-validation study on the Cohn-Kanade dataset. In effect, it means that

the Cohn-Kanade database is an easier database to benchmark on, and reported results obtained on

the Cohn-Kanade database should be viewed as less remarkable as the same results obtained on the

MMI database. Of course, it would be very hard to define exactly how much easier the Cohn-Kanade

database is.
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6.4.2 Event coding using AU frame activation information

The SVM classifier described above detects AUs per frame. Besides AU coding per frame, we also

want to be able to perform so-called event coding. This means determining which AUs have been

active at least once in a certain period of time. In our case, we want to determine which AUs were

active in an image sequence.

The simplest way to perform event detection is to use a threshold on the number of frames predicted

active by the frame based AU detector. As the SVM classifier adds an a priori unknown amount

of noise to its output in the form of false positives and false negatives, fixing a threshold based on

for example the minimal duration of an AU as observed by psychologists will not necessarily achieve

optimal results. To overcome this problem we add a decision layer that will empirically learn a

threshold θ based on the AUs automatically detected per frame. This frame activation detection

output already contains the misclassification noise. The adaptive threshold we learn will use this

knowledge to attain a higher probability of correctly performing the event coding on new test samples

than a fixed threshold defined by a human expert, as it has knowledge about the errors typically made

by the frame-based detector. The threshold is learned as follows:

Suppose the SVM determined that a test sample video x has m frames where a certain AU A is

present. Let Np be a vector containing for every video in which A is present the number of frames

that the SVM predicted to have that AU present. Similarly, let Nn be the vector containing per video

in which A is not present the number of active frames that the SVM falsely predicted A to be present.

Let mp be the length of the shortest video segment belonging to Np, i.e. the video with the smallest

number of true positives:

mp = min (Np) (6.9)

Now let us filter the vector Nn, leaving those elements smaller than mp unchanged but setting all

other values equal to zero, and denote this vector by Nnp. Now we find mnp as

0 <= mnp = max (Nnp) < mp (6.10)

which is the length of the longest segment of false positives in the subset of videos Nnp that have in
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total fewer false positives than the smallest number of true positives in any of the videos, Np. Finally,

let us denote the number of active frames in a test sequence by m. The threshold θ that is used to

decide whether the test sample x contains A (i.e. m > θ) is now defined as:

θ =
mp +mnp

2
(6.11)

In effect what we have done here is maximising the margin between the true positives and the false

positives.

The event detection results using equation 6.11 on the frame-based AU activation detection output are

shown in table 6.6 for data from the MMI database and in table 6.7 for data from the Cohn-Kanade

database. As we can see, the results are not much better than the frame-based results. While we have

improved the precision rates by recovering from a number of false positives, we have at the same time

decreased the recall by creating more false negatives. In the next section, we will propose to analyse

the temporal dynamics of an AU each time that AU was predicted active in one or more frames of an

image sequence. We will see that when we do this, AU event detection results improve significantly.
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AU Examples Cl. Rate Recall Precision F1-measure θ = 0

1 22 0.909 0.955 0.500 0.656 0.618
2 25 0.881 0.880 0.458 0.603 0.597
4 38 0.872 0.763 0.569 0.652 0.544
5 19 0.885 0.579 0.355 0.440 0.492
6 27 0.885 0.852 0.489 0.622 0.537
7 15 0.905 0.667 0.357 0.465 0.435
9 15 0.909 0.867 0.394 0.542 0.489
10 17 0.872 0.471 0.267 0.340 0.426
12 17 0.856 0.765 0.295 0.426 0.444
13 14 0.909 0.857 0.375 0.522 0.510
15 15 0.885 0.600 0.290 0.391 0.417
16 18 0.807 0.389 0.163 0.230 0.346
18 16 0.885 0.625 0.312 0.417 0.375
20 15 0.905 0.933 0.389 0.549 0.583
22 15 0.868 0.867 0.302 0.448 0.417
24 15 0.885 0.800 0.324 0.462 0.417
25 105 0.823 0.933 0.729 0.819 0.824
26 32 0.704 0.548 0.227 0.321 0.362
27 15 0.934 1.000 0.484 0.652 0.437
30 15 0.897 0.857 0.343 0.490 0.292
43 15 0.909 0.867 0.394 0.542 0.510
45 107 0.877 0.916 0.824 0.867 0.846

Avg: 0.876 0.772 0.402 0.521 0.519

Table 6.6: Subject independent cross validation results for AU event detection using adaptive thresh-
olds on 244 examples from the MMI Facial Expression Database. The last column shows the results
for fixing θ = 0.

AU Examples Cl. Rate Recall Precision F1-measure θ = 0

1 68 0.915 0.864 0.911 0.887 0.780
2 50 0.935 0.929 0.848 0.886 0.851
4 54 0.856 0.886 0.633 0.738 0.644
5 37 0.889 0.818 0.711 0.761 0.763
6 39 0.922 0.912 0.775 0.838 0.827
7 31 0.784 0.522 0.353 0.421 0.351
9 30 0.922 0.800 0.667 0.727 0.686
10 26 0.830 0.650 0.406 0.500 0.444
12 42 0.954 0.972 0.854 0.909 0.742
15 19 0.928 0.667 0.167 0.267 0.438
20 34 0.850 0.586 0.607 0.596 0.667
24 17 0.948 0.636 0.636 0.636 0.563
25 19 0.830 0.881 0.766 0.819 0.897
26 27 0.843 0.474 0.391 0.429 0.328
27 30 0.987 1.000 0.926 0.962 0.750
45 23 0.922 0.778 0.636 0.700 0.723

Avg: 0.895 0.773 0.643 0.692 0.653

Table 6.7: Subject independent cross validation results for AU activation event detection using adap-
tive thresholds on 153 examples from the Cohn-Kanade Database. The last column shows the results
for fixing θ = 0.



Chapter 7

Action Unit temporal analysis

In the previous chapter, we have investigated the problem of analysing the morphology of a facial

expression. That is, we have identified which facial muscles (i.e. AUs) were used. What we haven’t

investigated is how those facial muscles were used. In this section we will go deeper into this issue

by presenting methods that can recognise exactly when a facial action starts, when it reaches a peak,

when a peak ends, and when it has returned to a neutral state. As a by-product of this temporal

phase analysis, we will also be able to tell how many peaks there were, how long the overall facial

action lasted and how fast the facial action reached its peak. This information will be used later in

chapter 9 to distinguish posed from spontaneous expressions.

A facial action (AU) can be in any of four possible temporal phases: the onset phase, the apex phase,

the offset phase and the neutral phase. The onset phase is defined as the period in which the visible

change in appearance and/or displacement of facial features caused by the contraction of the related

facial muscle(s) is growing stronger. For instance, in the onset phase of AU1, which causes the inner

portion or the eyebrows to be raised, the inner eyebrow will move up, away from its initial neutral

position. In the apex phase of a facial action, the corresponding muscle(s) are contracted, but the

contraction does not increase anymore, nor does it decrease. In turn, the related facial points, e.g.

the points on the inner eye-brows, remain in a fixed position. While the apex phase indicates that a

peak in muscle contraction has been reached, the first apex phase reached need not be the only peak,

nor does it have to be the peak with maximum intensity. Multiple apices of varying intensities may

occur before the facial muscle returns to its neutral position. During the offset phase the muscles

relax again, effectively causing the related facial points to move towards their position typical for an

110
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expressionless face. When a facial action has returned to the neutral phase, we regard that action to

be finished. If after some time another onset phase begins, we regard this to be a new facial action.

In some cases the activation of an AU involves relaxation of certain muscles instead of contraction

of these muscles. In such cases one should interchange ‘contraction’ with ‘relaxation’ in the explana-

tion above. Often the order of the temporal segments is neutral-onset-apex-offset-neutral, but more

complex combinations such as neutral-onset-apex-onset-apex-offset-neutral (i.e. multiple-apex) facial

actions are possible as well.

In this chapter we will propose and compare three methods to identify the temporal phases of an

AU. We will show that the proposed combination of Support Vector Machine-Hidden Markov Model

performs extremely well. We will also show that using the output of the temporal analysis system for

event detection greatly improves event detection accuracy.

7.1 Temporal analysis per frame

As a facial action can at any moment in time be in only one of the four temporal segments, we consider

the problem of AU temporal segment recognition to be a four-valued multiclass classification problem.

Initially, we tried a more or less brute-force approach, that does not model the evolution of a facial

action explicitly. In this approach, we determine for each frame separately in what temporal phase

the facial action is at that moment, independently from all other frames in a video.

To solve this problem we used a one-vs-one approach to multiclass SVMs (mc-SVMs). In this approach,

for each AU and every pair of temporal segments we train a separate sub-classifier specialised in the

discrimination between two temporal segments. This results in
∑K−1

i=1 i = 6 sub-classifiers that need

to be trained per AU (C = {1, 2, 3, 4}, and K = |C| = 4 being the number of classes in our multiclass

problem). When a new test example x(t) is introduced to the mc-SVM, every sub-classifier returns a

prediction of the class c(t) ∈ C, and a majority vote is cast to determine the final output c (t) of the

mc-SVM for an example at time t.

As we use the same features for the recognition of temporal segments that were used for the detection of

AU activation and the ratio of positive/negative samples is very similar to that of the AU activation

detection problem, we again apply GentleBoost feature selection. GentleBoost determines which

features will be used for training and testing the sub-classifiers. Table 7.5 lists which feature was
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Figure 7.1: Scatter plots of pairs of the most informative mid-level feature parameters selected by
GentleBoost for: (left) the onset temporal segments of AU1, (mid) the apex temporal segments of
AU1 and (right) the offset temporal segments of AU1. Crosses denote spontaneous brow data while
squares denote data of deliberately displayed brow actions.

selected to be the most important for each temporal segment of every AU. The most informative

features for classification of onset vs. neutral, apex vs. neutral, and offset vs. neutral temporal

segments of AU1 are depicted in Fig. 7.1. A more detailed investigation on the characteristics of the

features regarding AU temporal dynamics is given in section 7.4.

A different sub-classifier is trained for each combination of classes. As the task of these sub-classifiers

is to distinguish between two classes only, we train each sub-classifier with a different subset of the

training data that contains only examples that are either of the positive or of the negative class of

that sub-classifier. For instance, if we learn an onset vs. offset classifier, we remove all frames labelled

neutral or apex from the training data. Similarly, the feature selection is performed on this subset of

data, resulting in a different set of selected features for each sub-classifier.

To investigate how well this approach to the analysis of facial expressions works, we performed the

following evaluation study. In our fully automatic system, we intend to apply the temporal analysis

of an AU only on videos in which that AU was found to be active. At this point we want to focus

on the performance of the temporal segment recognition element, separately from the performance of

the AU activation detection element (which was evaluated thoroughly in chapter 6). Therefore, we

assume a perfect AU activation detection, i.e. we use the manual labelling of AUs to decide whether

an AU was active in a video or not.

Because after this assumption we know whether a video contains the AU, and we only need to dis-

tinguish between the temporal segments of that particular AU, it is sufficient to use as training data

only the videos in which that AU is active. We again perform leave-one-subject-out cross validation
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AU Neutral Onset Apex Offset

1 0.787 0.615 0.506 0.434
2 0.724 0.577 0.651 0.447
4 0.687 0.525 0.668 0.260
5 0.698 0.275 0.440 0.234
6 0.751 0.388 0.402 0.316
7 0.616 0.114 0.300 0.120
9 0.835 0.594 0.833 0.163
10 0.805 0.572 0.726 0.382
12 0.911 0.679 0.717 0.622
13 0.924 0.802 0.691 0.616
15 0.749 0.264 0.733 0.215
16 0.763 0.470 0.578 0.450
18 0.919 0.681 0.680 0.487
20 0.832 0.596 0.896 0.464
22 0.847 0.675 0.429 0.337
24 0.465 0.263 0.433 0.029
25 0.839 0.612 0.774 0.563
26 0.764 0.510 0.644 0.382
27 0.734 0.669 0.506 0.659
30 0.705 0.272 0.433 0.376
43 0.880 0.541 0.595 0.639
45 0.963 0.717 0.516 0.629
46 0.679 0.243 0.258 0.225

Avg: 0.777 0.507 0.583 0.393

Table 7.1: Classification accuracy of multiclass gentleSvm at distinguishing the four temporal phases
neutral, onset, apex and offset, measured per frame in terms of F1-measure.

on this subset of the data. We have evaluated our proposed methods on the 244 videos from the MMI

database only, because the videos in the MMI-Facial Expression Database display the full neutral-

expressive-neutral pattern and the videos from the Cohn-Kanade database stop once they reach their

peak. It is essential to have data with this complete neutral-expressive-neutral pattern, as it is exactly

this pattern of facial actions that we are interested in. Classification accuracy is measured per frame.

The results of this study using mc-SVMs are shown in table 7.1.

7.2 Temporal model using temporal dynamics grammatical rules

The frame-based onset, apex and offset detector described in section 7.1 is not perfect. For one thing,

it lacks the ability to model the relationship between consecutive frames. Let us think of a facial

expression as being a sentence, with the AU activations acting as the words and an AU’s temporal

segments as the letters of a word. To improve the analysis of facial action temporal dynamics, one fact
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to consider is that like a sentence in natural language, a facial action should obey certain grammatical

rules. For instance, an AU activation cannot begin with an apex segment. Even though the preceding

onset or offset phase may be short, it always precedes the apex phase of an AU activation. Similarly, the

transition from an apex phase to a neutral phase should involve an offset phase, though the temporal

duration of this offset may be (very) short. In our system, we implemented these grammatical rules

of an AU activation by means of two temporal filters.

The first filter enforces a minimal duration of a temporal segment and effectively removes all isolated

misclassifications from the mc-SVM prediction. We observed from our data that no temporal segment

has a duration shorter than 3 frames, which is in our case 1
8th of a second. To decide what the temporal

segment of the prediction ct will be, we apply a sliding window filter, casting a majority vote on the

predictions [ct−2 . . . ct . . . ct+2]. In case of a tie, we decide to assign the value of ct+1 to prediction ct.

Next we apply a filter that enforces certain temporal segment transitions. There are two violations of

grammatical rules that we check for.

1. Neutral to Apex. If at time t a transition is made from the neutral phase to the apex phase, we

change the values of the predictions [ct . . . ct+2] to ‘onset’, effectively inserting a minimal length

onset phase.

2. Apex to Neutral. If at time t a transition is made from the apex phase to the neutral phase, we

change the values of the predictions [ct . . . ct+2] to ‘offset’, effectively inserting a minimal length

offset phase.

To test the effect of these grammatical rules, we used the same evaluation procedure as proposed in

section 7.1. The results for the frame-based recognition using grammatical rule post-processing of the

mc-SVM output are shown in table 7.2.

7.3 Temporal model using Hidden Markov Models

Traditionally, HMMs have been used with great effect to model time in classification problems. But

while the evolution of a facial action over time can be represented very efficiently by HMMs, the

frame-by-frame emission probabilities of the various states are normally modelled by fitting Gaussian

mixtures on the features. These Gaussian mixtures are fitted using likelihood maximisation, which
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AU Neutral Onset Apex Offset

1 0.826 0.598 0.483 0.488
2 0.737 0.570 0.645 0.492
4 0.681 0.414 0.553 0.284
5 0.734 0.259 0.455 0.310
6 0.748 0.349 0.400 0.303
7 0.813 0.171 0.311 0.286
9 0.855 0.669 0.849 0.492
10 0.821 0.552 0.681 0.386
12 0.915 0.655 0.701 0.638
13 0.921 0.804 0.715 0.642
15 0.783 0.285 0.716 0.487
16 0.768 0.453 0.595 0.433
18 0.924 0.666 0.667 0.489
20 0.851 0.610 0.904 0.535
22 0.861 0.690 0.467 0.389
24 0.506 0.307 0.422 0.142
25 0.845 0.621 0.786 0.576
26 0.778 0.511 0.630 0.380
27 0.782 0.674 0.516 0.710
30 0.721 0.285 0.409 0.419
43 0.891 0.523 0.614 0.690
45 0.959 0.484 0.151 0.606
46 0.679 0.333 0.279 0.310

Avg: 0.800 0.499 0.563 0.456

Avg: 0.800 0.499 0.563 0.456

Table 7.2: Classification accuracy of multiclass gentleSvm classifier followed by a filtering process
using expression grammatical rules for distinguishing the four temporal phases neutral, onset, apex
and offset, measured per frame, in terms of F1-measure.
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assumes correctness of the models (i.e. the feature values should follow a Gaussian distribution) and

thus suffers from poor discrimination [Bourlard and Morgan, 1998]. Moreover, it results in mixtures

trained to model each class and not to discriminate one class from the other.

SVMs on the other hand are incapable of modelling time, but they discriminate extremely well between

classes. Using them as emission probabilities might very well result in an improved recognition. We

therefore train one SVM for every combination of classes (i.e., temporal phases neutral, onset, apex,

and offset), just as described in section 7.1. We then use the output of the mc-SVMs to compute the

emission probabilities. This way we effectively have a hybrid SVM-HMM system. This approach has

been previously applied with success to speech recognition [Kruger et al., 2005].

HMMs work in a probabilistic framework. Unfortunately we cannot use the output of a SVM directly

as a probability measure. The (unsigned) output h(x) of a SVM is a distance measure between a test

pattern and the separating hyper plane defined by the support vectors. There is no clear relationship

with the posterior class probability p(y = +1|x) that the pattern x belongs to the class y = +1.

However, Platt proposed an estimate for this probability by fitting the SVM output h(x) with a

sigmoid function [Platt, 2000]:

p(y = +1|x) = g(h(x), A,B) ≡ 1

1 + exp(Ah(x) +B)
(7.1)

The parameters A and B of eq.(7.1) are found using maximum likelihood estimation from a training

set pi, Yi with pi = g(f(xi, A,B) and target probabilities Yi = (yi + 1)/2. The training set can but

does not have to be the same set as used for training the SVM.

Since SVMs are binary classifiers we use a one-versus-one approach to come to a multiclass classifier.

This approach is to be preferred over the one-versus-rest approach as it aims to learn the solution to a

more specific problem, namely, distinguishing between one class from one other class at a time. This

is in line with our idea to use SVMs for discrimination specificity and HMMs to model time. For this

pairwise classification we need to train K(K − 1)/2 SVMs, where in our case K = 4 is the number of

temporal phases.

Our HMM consists of four states, one for each temporal phase. For each SVM we get, using Platt’s

method, pairwise class probabilities µij ≡ p(ci|ci or cj ,x) of the class (HMM state) ci given the

feature vector x and that x belongs to either ci or cj . These pairwise probabilities are transformed
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Figure 7.2: An example of AU temporal phase recognition for AU25. The solid line shows the true
values of the phase labelling per frame and the dotted line the prediction by the SVM-HMM. Horizontal
lines depict either a neutral or an apex phase, an upward slope signifies an onset phase and a downward
slope an offset phase.

into posterior probabilities p(ci|x) by

p(ci|x) = 1/





C
∑

j=1,j 6=i

1

µij
− (K − 2)



 (7.2)

Finally, the posteriors p(ci|x) have to be transformed into emission probabilities by using Bayes’ rule

p(x|ci) ∝
p(ci|x)

p(ci)
(7.3)

where the a-priori probability p(ci) of class ci is estimated by the relative frequency of the class in the

training data.

We again evaluated our proposed hybrid SVM-HMM method on the 244 videos from the MMI

database. The results for the frame-based recognition results are shown in table 7.3. Figure 7.2

shows one example of the recognition of the temporal phases of a video containing an AU 25 acti-

vation. The figure shows that the prediction (red line) is one frame late at predicting the first and

second apex phases. It also predicts the last offset phase to stop 6 frames too early. The SVM-HMM

system did recognise correctly that there are two apex phases.

Figure 7.3 shows the relative increase of performance in recognising each temporal segment, comparing

the three methods: using mcSVMs only, using mcSVMs with grammatical rule post-processing and
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AU Neutral Onset Apex Offset

1 0.790 0.669 0.585 0.536
2 0.848 0.544 0.730 0.642
4 0.690 0.521 0.615 0.334
5 0.610 0.352 0.561 0.292
6 0.807 0.469 0.693 0.374
7 0.784 0.100 0.390 0.108
9 0.895 0.756 0.887 0.462
10 0.855 0.587 0.790 0.323
12 0.931 0.693 0.773 0.679
13 0.926 0.847 0.750 0.642
15 0.791 0.339 0.742 0.357
16 0.815 0.481 0.600 0.384
18 0.914 0.569 0.740 0.592
20 0.883 0.734 0.860 0.583
22 0.864 0.701 0.469 0.373
24 0.507 0.257 0.547 0.037
25 0.865 0.634 0.776 0.631
26 0.751 0.490 0.583 0.417
27 0.720 0.747 0.858 0.708
30 0.787 0.461 0.541 0.415
43 0.937 0.476 0.758 0.728
45 0.971 0.780 0.653 0.710
46 0.618 0.146 0.182 0.239

Avg: 0.807 0.537 0.656 0.459

Table 7.3: Classification accuracy of hybrid SVM-HMM classifier at distinguishing the four temporal
phases neutral, onset, apex and offset, measured per frame, in terms of F1-measure.
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Figure 7.3: Comparison of the classification results shown per temporal phase (onset, apex, offset and
neutral). The results shown are the average over all 22 AUs.

using the hybrid SVM-HMMs proposed in this section. In this figure we have averaged the results per

temporal phase over all AUs.

When we take a closer look at the results of the detection of the temporal segments, we see that

compared with the multiclass gentleSvm method, the detection of the apex phase has increased most

from introducing the HMM. This is followed closely by the offset phase. The apex phase had an

increase in φ1 of 8%, the offset 6.8%, the onset phase 3.6% and the neutral phase 3.4% (relative to mc-

SVMs). The fact that the neutral phase benefits least from the addition of the HMM is as expected,

because by its very nature it is not a dynamic part of the facial action. The effect of applying the

grammatical rules is less successful. While it attains good results for the offset phase and in a limited

way for the neutral phase, it actually decreases the accuracy of the onset and apex phase recognition.

While the classification accuracy per frame is a good way to compare various approaches, it might

not always provide the best insight to the overall performance of an AU temporal phase recognition

system. For instance, think of the following extreme example: we have an onset starting at frame 2

and lasting 1 frame, followed by an apex phase of 1 frame and an offset phase of 1 frame, after which

the AU returns to its neutral state. The entire AU thus lasted three frames, and could be encoded as

[0 1 2 -1 0]. Now let us assume that our temporal analysis system returned a classification of [0 0 1 2

-1], that is, the same result but shifted in time by one frame. This would score 0% recall, precision,

classification rate and F1-measure for all phases except the neutral phase. Yet this would not be a
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Figure 7.4: Phase duration error of the detected temporal phases onset, apex and offset, and the entire
facial action. Results are averaged per AU, and measured frames.

fair judgement of the system. In essence, it performed really well, it only introduced a slight delay.

We therefore take a closer look at some other statistics of the performance of the AU temporal

analysis system that employs the hybrid SVM-HMM classifier and GentleBoost feature selection. To

de-correlate these results from the classification accuracy results, we only investigated the videos for

which the SVM-HMM system predicted at least one frame to be non-neutral, enhancing the timing

results in the process. First of all we looked into the durations of the facial actions, both the total

duration of an AU (i.e. the number of consecutive frames that were predicted to be non-neutral)

as well as the durations of the temporal phases separately. Figure 7.4 shows the statistics for this

analysis. The duration error is measured in frames. The figure shows the average number of frames

that a temporal phase duration or the entire AU activation duration is off, averaged per AU. We can

see that for most AUs, the average error per temporal phase is less than 4 frames. The apex temporal

phase has the largest error. We can also see from figure 7.4 that the error of the total AU activation

duration is far less than the sum of the temporal phase duration errors. This is because usually, if

the apex phase has been predicted to last too long, consequently the offset phase will start late and

results in an error in the offset phase duration, which effectively gets double counted.

Sometimes it is not informative enough to look at the number of frames that the duration of a temporal

phase or an entire facial action is mis-predicted. An error of four frames has much larger consequence

for the onset phase, which typically lasts between 4 and 10 frames, than for the apex phase, which

can last multiple seconds, i.e. almost hundreds of frames. We therefore present the temporal phase
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Figure 7.5: Relative phase duration of the detected temporal phases onset, apex and offset, and the
entire facial action. Results are averaged per AU, and measured frames.

duration results in a slightly different way in figure 7.5. In that figure we show the relative duration of

the temporal phases of the AU activation. That is, if a phase was manually labelled to last 4 frames

and predicted to last 8 frames, figure 7.5 would show a value of 200% for that phase. Compared

with figure 7.4 we notice now that using this measure the error of the apex and total AU activation

duration are almost negligible. This is because their total durations are much longer.

Next we look into the timing of the temporal phase transitions. In figure 7.6 we show for the three

most important transitions: neutral to onset, onset to apex, and apex to offset how many frames they

were early (negative numbers) or late (positive numbers), on average. For most AUs, the timing is

very accurate, with an average error of less than two frames early or late. The figure indicates that

the system usually predicts the apex a little bit too early and the onset a little bit too late. For the

offset the values differ per AU. This is also the temporal phase for which the most AUs result in a

large (> 3 frames) timing error.

Figure 7.6 shows how many frames on average a transition is late or early. However, we would like

to know a bit better exactly how often an AU is early or late, and how often it is exactly on time.

This is shown in figure 7.7. The figure shows that a few temporal phases of some AUs are persistently

predicted early (e.g. the offset of AU1, the apex of AU7 or the apex of AU15), but very often phases

are predicted sometimes to start early and sometimes to start late. It is noteworthy that the onset,

and therefore the start of the entire facial action, is almost never early. We believe this is because most

facial actions start with only a change in appearance, followed shortly after by motion of the related
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Figure 7.6: Average number of frames a phase starts late (positive values) or early (negative values),
for the temporal phases onset, apex and offset, per AU.

facial points. As our features only encode information of the facial point motion, our classifiers cannot

detect this very frist change of appearance, which marks the beginning of the facial action. Only the

AUs 2, 4, 9, 12, 18 and 45 start exactly on time for a significant number of predictions. Note that the

detection of the temporal segments of AU45 is nearly perfect. This has two reasons: firstly, we have

a very large number of examples for this AU, no less than 107 videos contained an AU45 activation.

Secondly, AU45 is a purely reflexive action and the temporal pattern is extremely robust. Our system

has completely captured the temporal dynamics of this action.

7.4 Feature set evaluation

At this point we want to revisit the analysis of the three feature sets proposed in section 5.3. In

section 6.4.1 we analysed their importance relative to AU activation detection and found that FD

performed best, while FS and FW performed almost equally well. For the recognition of the temporal

phases of AUs we have repeated the evaluation study performed in section 6.4.1, only now with the

goal to recognise each frame as belonging to either the neutral, onset, apex or offset phases. Table 7.4

shows the results of this test.

As expected, the difference between the purely static features FS and the local time parameter features

FW is quite distinct now. This is most visible for the highly dynamic phases onset and offset, where
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Figure 7.7: Breakdown of how often a temporal phase starts early, late, or on time.
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Features Avg. cl. rate Avg. φ1 φ1 neutral φ1 offset φ1 onset φ1 apex

FS 0.799 0.496 0.903 0.200 0.245 0.638
FD 0.856 0.646 0.926 0.440 0.489 0.731
FW 0.847 0.616 0.923 0.396 0.463 0.681

{FS, FD} 0.862 0.655 0.933 0.434 0.502 0.751
{FS, FW} 0.848 0.610 0.926 0.396 0.452 0.667
{FD,FW} 0.859 0.663 0.927 0.473 0.517 0.733

{FS, FD,FW} 0.868 0.688 0.936 0.498 0.541 0.777

Table 7.4: Performance of various feature set combinations for the problem of recognising the temporal
phases of Action Units. The fourth to seventh column show the average values over all AUs, per
temporal phase.seventh column show the average values over all AUs, per temporal phase. The
second and third columns show the average values over all temporal phases and all AUs.

the feature set FW outperforms FS by almost a factor two. Also, the addition of FW to FS and FD is

more effective at solving this problem of temporal dynamics analysis. FS cannot encode any temporal

dynamics information and is outright poor at recognising the onset and offset phases. FD is once again

the best performing feature set, but the combination of all features outperforms FD by a good 5% φ1

increase for the non-neutral phases.

We again have a closer look at exactly which features are chosen by GentleBoost for the recognition of

the temporal phases of AUs. In our proposed AU temporal dynamics analysis method, the temporal

phases are distinguished pairwise from each other. Table 7.5 lists the best feature selected to separate

examples for each of the 6 combinations, as selected by GentleBoost. For brevity, the time parameter

t is left out of the feature definitions, but it is understood that the features have a different value for

each moment in time t (see section 5.3).

7.5 Event detection using AU temporal analysis

We can now use the output of any of the AU temporal analysis methods to perform event detection,

instead of the adaptive threshold proposed in section 6.4.2. At this point we want to evaluate how well

the entire fully automatic system performs at event detection, combining AU activation detection and

AU temporal analysis. To detect an event, each video in which at least one frame has been determined

to be active is passed on to the SVM-HMM temporal analysis sub-system described in this chapter.

The analysis of the temporal dynamics might result in a neutral-expressive-neutral pattern, but the

system might also decide that the entire sequence was neutral after all. If, after recognition of the

temporal phases, any of the frames remains non-neutral, we determine that AU to be present within



7.5. Event detection using AU temporal analysis 125

AU N vs Of N vs On N vs A Of vs On Of vs A On vs A

1 δ(f3(D1, N)) df3(D1,G1)
dt

δ(f3(D1, H1)) df3(D1,G1)
dt

δ(f3(D1, H)) df2(D)
dt

2 δ(f3(D1, F )) df3(E1,G1)
dt

δ(f3(A, D1)) df3(E1,G1)
dt

df3(E,G)
dt

df3(E1,G1)
dt

4 f21(B1, D) df4(D,G)
dt

δ(f3(D1, H1)) df4(D,G)
dt

δ(f3(B1, D1)) f24(B1, D)

5 δ(f3(F, G)) δ(f4(F1, G)) δ(f3(F, G)) df3(F1,G1)
dt

δ(f3(G1, H1)) f21(F, G)

6 f24(K, J) df3(I,M)
dt

δ(f3(I, M)) df3(I,M)
dt

df3(J,M)
dt

f21(J, M)

7 δ(f4(A1, G)) δ(f4(A, G)) δ(f3(B1, D1)) df4(F1,G)
dt

δ(f3(B1, E1)) δ(f3(B1, D1))

9 δ(f3(A1, M)) df3(K,M)
dt

δ(f3(G, M)) df3(L,M)
dt

df3(K,M)
dt

δ(f3(A1, M))

10 δ(f3(K, M)) δ(f3(K, M)) δ(f3(K, M)) df3(K,L)
dt

δ(f3(K, M)) f21(K, L)

12 δ(f3(K, J)) δ(f3(J, L)) δ(f3(I, J)) df4(I,N)
dt

δ(f4(B1, I)) f24(F1, J)

13 f24(H, J) df3(I,M)
dt

δ(f3(J, M)) df2(J)
dt

df4(J,N)
dt

f21(J, L)

15 f21(F1, J) δ(f3(I, N)) δ(f3(K, J)) df3(A1,I)
dt

df3(I,J)
dt

δ(f4(J, M))

16 f21(K, L) df3(K,L)
dt

δ(f3(K, L)) df3(K,L)
dt

df3(K,L)
dt

f21(K, L)

18 δ(f3(I, J)) df3(I,J)
dt

δ(f3(I, J)) df3(I,J)
dt

df3(I,J)
dt

f21(I, J)

20 δ(f3(I, J)) df3(I,J)
dt

δ(f3(I, J)) df3(I,J)
dt

df3(I,J)
dt

df3(I,J)
dt

22 δ(f3(K, L)) δ(f3(I, K)) δ(f3(K, L)) df3(K,L)
dt

f4(B, I) f24(K, L)

24 δ(f3(I, N)) δ(f3(D1, L)) δ(f3(D1, I)) df3(D1,I)
dt

δ(f3(B1, E1)) δ(f3(D1, F ))

25 δ(f3(K, L)) δ(f3(K, L)) δ(f3(K, L)) df3(K,L)
dt

df3(K,L)
dt

df3(K,L)
dt

26 f21(K, L) df2(L)
dt

δ(f3(K, L)) df3(K,L)
dt

df3(K,L)
dt

f21(K, L)

27 δ(f3(B, L)) df3(K,L)
dt

f3(K, L) df3(K,L)
dt

df3(K,L)
dt

f21(K, L)

30 δ(f3(K, M)) δ(f3(K, M)) δ(f3(K, M)) df3(K,L)
dt

δ(f2(E)) δ(f4(A, D))

43 f21(F, H) δ(f4(D1, F )) δ(f3(F, N)) df4(E1,F )
dt

df4(D1,F )
dt

f21(F, H)

45 df4(D1,F )
dt

df4(D,F1)
dt

f23(E, F1) df4(D,F1)
dt

df4(B1,F )
dt

f19(E1, F1)

46 δ(f4(F, G1)) df4(F1,G)
dt

f4(D1, F ) f24(F, G1) δ(f4(A1, L)) f4(E, I)

Table 7.5: Most important features for distinguishing pair-wise between the four temporal segments
neutral, onset apex and offset.
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System Cl. Rate Recall Precision F1-measure

No temporal analysis 0.876 0.772 0.402 0.521
Hybrid SVM-HMM 0.943 0.756 0.653 0.692

Table 7.6: Comparison of the various event detection methods.

the video, scoring an AU event. We applied this approach to the output of the SVM-HMM temporal

analysis system, and compare this method with the method without temporal analysis (described in

section 6.4.2). The results of this test are shown in table 7.6.

From table 7.6 we can see that the hybrid SVM-HMM with GentleBoost feature selection event

detection method outperforms the AU activation event method with a considerable margin. We

want to take a closer look at this method for event detection, to be able to compare it with the results

presented in 6.4.2. Table 7.7 gives a detailed breakdown of the performance of the SVM-HMM method

per AU. In effect, we can only hope to increase the precision of the event detection here, compared to

the AU activation adaptive threshold method presented in section 6.4.2, as we do not scrutinise the

videos that were predicted to have no active frames and thus might have been false negatives in terms

of AU event detection. But, if we take a look at table 6.6, the recall is already quite high and it is

exactly the precision that we would like to increase. Indeed, our results show that this approach is

extremely effective, increasing φ1 by 17.1% and pr by 25.1%!
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AU Cl. Rate Recall Precision F1-measure

1 0.971 0.909 0.800 0.851
2 0.947 0.760 0.731 0.745
4 0.909 0.684 0.722 0.703
5 0.959 0.684 0.765 0.722
6 0.938 0.778 0.700 0.737
7 0.959 0.533 0.727 0.615
9 0.951 0.733 0.579 0.647
10 0.938 0.706 0.545 0.615
12 0.922 0.824 0.467 0.596
13 0.963 0.929 0.619 0.743
15 0.959 0.667 0.667 0.667
16 0.918 0.778 0.467 0.583
18 0.934 0.562 0.500 0.529
20 0.967 0.800 0.706 0.750
22 0.955 0.933 0.583 0.718
24 0.955 0.600 0.643 0.621
25 0.942 0.962 0.909 0.935
26 0.831 0.581 0.391 0.468
27 0.967 0.933 0.667 0.778
30 0.951 0.500 0.583 0.538
43 0.963 0.867 0.650 0.743
45 0.938 0.907 0.951 0.928

Avg: 0.943 0.756 0.653 0.692

Table 7.7: Subject independent cross validation results for AU activation event detection after iden-
tification of the temporal segments of AUs. Results are for 244 examples taken from the MMI Facial
Expression Database



Chapter 8

Emotion recognition

8.1 Emotion recognition: conscious vs. unconscious reasoning ap-

proaches

The ability to detect and understand facial expressions and other social signals of someone with

whom we are communicating is the core of social and emotional intelligence [Goleman, 1995]. Human

Machine Interaction systems capable of sensing stress, inattention and heedfulness and able to adapt

and respond to these affective states of users are likely to be perceived as more natural, efficacious

and trustworthy [Pantic and Rothkrantz, 2003].

But what exactly is an affective state? Traditionally the terms affect and emotion have been used

synonymously. Following Darwin, discrete emotion theorists proposed the existence of six or more

basic emotions that are universally displayed and recognised (see chapter 2). These include emotions

such as happiness, anger, sadness, surprise, disgust and fear.

In the previous two chapters we have focused on recognising the signs of a facial expression, in terms

of AUs and their temporal segments. While this is an objective and complete description of facial

expressions, they are hard for humans to understand or use in communication. When we talk to

each other, we rather say that someone was looking sad than that he had activated AU4 and AU15.

Ultimately, we will reach a point where we need to interpret the facial expression, now coded in AUs, in

some more abstract terms. In this chapter we will investigate the possibilities to map the recognised

AUs to the six basic emotions. We have chosen for this description of facial expressions because

128
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Table 8.1: Rules for mapping AUs to emotions, according to the FACS investigators guide. A||B
means ‘either A or B’.

Emotion AUs Emotion AUs

Happy {12} Fear {1,2,4}
{6,12} {1,2,4,5,20,

Sadness {1,4} 25||26||27}
{1,4,11||15} {1,2,4,5,25||26||27}
{1,4,15,17} {1,2,4,5}

{6,15} {1,2,5,25||26||27}
{11,17} {5,20,25||26||27}
{1} {5,20}

Surprise {1,2,5,26||27} {20}
{1,2,5} Anger {4,5,7,10,22,23,25||26}

{1,2,26||27} {4,5,7,10,23,25||26}
{5,26||27} {4,5,7,17,23||24}

Disgust {9||10,17} {4,5,7,23||24}
{9||10,16,25||26} {4,5||7}

{9||10} {17,24}

there is a fair number of applications that we could implement if we are able to detect emotions (see

chapter 2). Also, existing facial expression recognition systems often recognise emotions so this allows

a comparison of our work with that of others.

Classic cognitive scientist studies like the EMFACS (emotional FACS), suggest that it is possible

to map AUs onto the basic emotion categories using a finite number of rules (as suggested in the

FACS investigators guide [Ekman et al., 2002], table 8.1). This effectively suggests that facial ex-

pressions are decoded at a conscious level of awareness. It suggests that we first consciously observe

exactly what parts of the face move or change appearance and then infer at a conscious level that

this means that a certain emotion is shown. Alternative studies, like the one on ‘the thin slices of be-

haviour’ [Ambady and Rosenthal, 1992], suggest that human expressive nonverbal cues such as facial

expressions are neither encoded nor decoded at an intentional, conscious level of awareness. In turn,

this finding suggests that biologically inspired classification techniques like artificial neural networks

(ANNs) may prove more suitable for tackling the problem of (basic) emotion recognition from AUs

as such techniques emulate unconscious human problem solving processes in contrast to rule-based

techniques, which are inspired by conscious human problem solving processes.

Recent work on emotion detection using biologically inspired algorithms used ANNs [Fasel et al., 2004],

SVMs [Bartlett et al., 2004], Bayesian Networks [Cohen et al., 2003, Zhang and Ji, 2005] and Hidden

Markov Models (HMMs) [Cohen et al., 2003]. Recent work on facial AU detection using biologically
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inspired algorithms has used similar techniques: ANNs [Tian et al., 2005], SVMs [Bartlett et al., 2004,

Valstar and Pantic, 2006], and Bayesian Networks [Zhang and Ji, 2005]. Recent work on AU and emo-

tion detection that used algorithms inspired by human conscious problem solving processes includes

rule-based systems [Pantic and Patras, 2006], case-based reasoning [Pantic and Rothkrantz, 2004], and

latent semantic analysis [Fasel et al., 2004]. See chapter 2 for an exhaustive overview of AU detection

systems.

The goal of the study presented in this chapter is a twofold. First we want to investigate whether a two-

step approach to emotion recognition, where both the facial feature extraction and the AU recognition

precede the emotion prediction, attains similar recognition rates as a single-step approach in which

the recognition of emotions is conducted based directly upon the extracted facial features. Detection

of AUs as a first step in facial expression detection has several advantages. AUs are independent from

high level interpretations in terms of emotions or moods. They also cause a dimensionality reduction,

as all expressions can be described using only 44 attributes, namely the 44 AUs. In contrast to one-

step expression detection, AU detectors can be trained independently of the facial expression shown.

Hence, in order to train an AU detector the training data does not need to contain examples of

all 7000 frequently occurring facial expressions. On the other hand, the main reason to presuppose

that a single-step approach could perform better is the error accumulation inherent in multiple-step

approaches.

The second goal is to investigate the suggestion implicitly made by recent alternative studies in

psychology that biologically inspired classification techniques like ANNs are more suitable for tackling

the problem of emotion recognition than logic inspired classifiers such as rule-based systems.

The features used for this study are f1 to f12 (see equations 5.12 to 5.19 in section 5.3). The action

unit recognition procedure was analogous to that described in section 6.3. See section 6.4.1 for the

performance of this AU detector on various databases. Figure 8.1 shows an outline of the systems we

will compare in this chapter.

8.2 One-step emotion recognition

We decided to keep our one-step approach to emotion recognition analogous to the method used for

AU detection. Thus, we use the features f1 to f12 (see equations 5.12 to 5.19 in section 5.3) and used
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gentleSVMs to recognise the emotions. To solve our six emotion detection problem we used a one-

versus-one multi-class SVM classifier. Feature selection by GentleBoost turned out to be particularly

efficient. On average, 7 of a total of 1260 features were picked as the most informative features in

one-vs-one emotion classification. It also resulted in a higher emotion recognition result. The average

F1-measure increased by 17.0% (see Table 8.2).

8.3 Two-step emotion recognition

In the two-step approach to emotion recognition from face image sequences, both the facial feature ex-

traction and the AU recognition precede the emotion prediction (see Fig. 8.1). We use the AU detector

described in chapters 6 and 7, that can detect 23 AUs. The choice of 23 AU categories was determined

by the AUs that can be encoded based upon the utilised features defined in section 5.3. As we can

see from table 8.1, the set of AUs that we are able to detect contains all but two of the components

of expressions (i.e., micro-events) that seem to be hardwired to emotions [Ekman et al., 2002].

To perform emotion classification based on AU predictions (the second stage of our two-step emotion

recognition approach), we experimented with both the biology and the logic inspired classification

engines. The logic inspired recognition engine is a rule-based system that maps the 15 AUs onto the

7 emotion categories. The utilised rules are the EMFACS rules suggested by Ekman and colleagues in

the FACS investigators guide (see Table 8.1, [Ekman et al., 2002]). The biology inspired recognition

engine that we have experimented with was an ANN with 3 hidden layers, each of which had 23 nodes,

and one output layer containing 6 nodes, one for every emotion. All neurons used the log sigmoid

evaluation function. The number of layers, neurons, and the evaluation function were empirically

determined.

8.4 Experiments

For this study we have used data from the Cohn-Kanade database. The database consists of a total

of 487 recordings of 97 subjects. From this set, we selected 156 image sequences of 66 subjects. Image

sequences were included in this validation set if two experts decided by consensus on the basic emotion

displayed in the samples in question.
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Figure 8.1: Overview of the automatic AU and emotion detection system: (a) input image sequence
with tracked facial points, (b) tracking results, (c) the four most important features for recognition
of AU2 shown over time, (d) GentleBoost is used to select the most important features, (e) which are
subsequently fed to (mc-)SVMs, (f) for two step approach: emotion detection from AUs by Artificial
Neural Networks or a rulebase.

Table 8.2: Results of one-step emotion recognition, clr is classification rate, rec is recall and pr
is precision: A) classification of features to emotions by a multi-class SVM, B) one-step emotion
classification without feature selection.

A B

Emotion clr rec pr φ1 clr rec pr φ1

Anger 0.948 0.643 0.750 0.692 0.923 0.549 0.608 0.577

Disgust 0.948 0.920 0.793 0.852 0.926 0.598 0.652 0.624

Fear 0.922 0.760 0.760 0.760 0.901 0.495 0.662 0.566

Happy 0.967 0.972 0.897 0.933 0.907 0.757 0.822 0.788

Sadness 0.935 0.619 0.867 0.722 0.903 0.307 0.613 0.409

Surprise 0.967 0.938 0.909 0.923 0.966 0.829 0.938 0.880

Average 0.948 0.809 0.829 0.819 0.903 0.620 0.681 0.649

Table 8.3: Results of two-step emotion recognition, clr is classification rate, rec is recall and pr is
precision: A) classification of manually labelled AUs to emotions by rules, B) automatically detected
AUs classified to emotions by rules, C) Neural Networks classifying automatically detected AUs into
emotions .

A B C

Emotion clr rec pr φ1 clr rec pr φ1 clr rec pr φ1

Anger 0.967 0.714 0.909 0.800 0.889 0.214 0.333 0.261 0.915 0.500 0.539 0.519

Disgust 0.980 0.960 0.923 0.941 0.856 0.920 0.535 0.677 0.935 0.760 0.826 0.792

Fear 0.980 0.960 0.923 0.941 0.889 0.680 0.654 0.667 0.895 0.720 0.667 0.693

Happy 1.00 1.00 1.00 1.00 0.941 0.917 0.846 0.880 0.948 0.917 0.868 0.892

Sadness 0.980 0.952 0.909 0.930 0.882 0.191 0.800 0.308 0.889 0.571 0.600 0.585

Surprise 1.00 1.00 1.00 1.00 0.941 0.844 0.871 0.857 0.974 0.938 0.938 0.938

Average 0.985 0.931 0.944 0.938 0.900 0.626 0.673 0.649 0.926 0.734 0.740 0.737
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The first goal of this study is to investigate the performance of a two-step approach in which AUs are

detected automatically in the first step and the complex expressions, in this case six basic emotions,

in the second step. We compare this two-step approach with the one-step emotion detection where

we feed the features directly into a multiclass SVM to detect emotions. Both two-step approaches use

binary SVMs to detect AUs first. In the second step we use either an ANN or a rulebase to map the

AUs to emotions. This second step in the two-step approach also gives us the data needed for the

second goal of our study: evaluating whether the classic or alternative psychological studies made a

correct assumption, i.e., whether biology inspired techniques indeed outperform logic inspired ones.

Figure 8.1 shows a diagram of the discussed systems.

All experiments were performed using a leave-one-subject-out cross validation strategy. The param-

eters for the trained (Gentle-)SVMs were obtained as described in section 6.2. Results for one-step

emotion detection are shown in table 8.2.

The ANN used to detect emotions from AUs in the two-step approach was evaluated using a leave-one-

subject-out cross validation as well. The rulebase used to detect emotions from AUs in the two-step

approach was directly applied to the output of the automatic AU detector as the rules are fixed and do

not need any training. Table 8.3 show the two-step approach results for the logic inspired rulebase and

the biologically inspired ANN, respectively. To test the “goodness” of our rulebase, we also applied the

rulebase on manually coded AUs. As we can see from table 8.3, for the two-step approach the ANN

performs best. The F1-measure obtained by ANNs is 8.8% higher than that obtained by applying the

rule-base to the automatically detected AUs.

Table 8.3 part B shows that results for the logic inspired approach deteriorate significantly when the

rules are applied on automatically detected AUs instead of manually labelled AUs. Obviously, the

rulebase is a very rigid, nonadaptive system that is sensitive to noise in the input. The fact that

the rule based classifier cannot learn and has no means to compensate for known weaknesses in the

AU detector (such as the poor classification of AU15 which influences sadness recall, see table 6.4)

contributes to a performance decrease. This is not the case for the biologically inspired ANN, as part

C of table 8.3 clearly shows. This suggests that the alternative studies in psychology offer a model for

high-level facial behaviour interpretation that is more suitable for computer-based analysis than the

model offered by classic studies.

When we compare tables 8.2 and 8.3, we observe that the two-step approach performs worse than the
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one-step approach. However, the difference between performing two-step emotion recognition with

ANNs and performing one-step emotion recognition not that big (an F1-measure difference of 8.2%) .

The interpretation free description of expressions in terms of AUs, the decreased dimensionality of the

classification problem, and the ability to analyse the temporal segments of the AU components that

make up the emotive expression could be considered more valuable then the increase in accuracy.

These results also clearly confirms the validity of our claim that it is possible to use AUs to automat-

ically recognise more complex expressions. Although not unexpected, this is an important result as

without it there would be little point in detecting AUs in the first place.

8.5 Application: Emotionally Aware Painting Fool

As an application to emotion detection, we combined the two-step emotion detection system described

in this chapter with The Painting Fool, created by Dr. Simon Colton. The Painting Fool is capable of

painting someone’s portrait given an input image. The idea was to make the Painting Fool appreciate

its subject more by using information about the emotion shown by the subject. To do so, we first

recorded a small video of a subject showing one of the six basic emotions using a webcam. We then

proceeded with analysing the activated AUs using the techniques proposed in chapters 6 and 7. Based

on the AU activation detection and the ANN described in section 8.3, we decided what emotion was

shown. For maximal visual effect we wanted to work with an image in which the emotion was shown

very strong, therefore we identified the frame in which the most AUs were in their apex phase. We

called this frame the apex frame. In order to allow the Painting Fool to enhance the image around

certain facial features, such as the eyes, the nose, and the mouth, we also passed the positions of the

tracked points in the apex frame to it. We coined the combination of our facial expression analysis

system and The Painting Fool: The Emotionally Aware Painting Fool1.

The Painting Fool bases the portrait on the image provided from the emotional modeling software,

and chooses its art materials, colour palette and abstraction level according to the emotion being

expressed. For instance, if it was told that the person was expressing happiness, it chose vibrant

colours, and painted in simulated acrylic paints in a slapdash way. If, on the other hand, it was told

that the person was sad, it chose to paint with pastels in muted colours. To make the painting look

1The Emotionally Aware Painting Fool, http://www.thepaintingfool.com/projects/mi competition/index.html, date
of access: February 29 2008
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Figure 8.2: Apex frame captured of the author showing his feelings during the Machine Intelligence
Competition 2007.

more like the sitter, the areas around the eyes, nose and mouth were painted in greater detail. This

was possible as the facial expression analysis system passed the facial point tracking information on

to The Painting Fool.

The entire system was integrated on a laptop and demonstrated during The Machine Intelligence

Competition 2007. This is an annual event sponsored by Electrolux and organised by the British

Computer Society, as part of their SGAI International Conference on Artificial Intelligence. The

competition awards a prize to the best live demonstration of Artificial Intelligence software which

shows the most progress towards machine intelligence. On December 11th 2007, the competition was

held at Peterhouse College at the University of Cambridge. We entered our “Emotionally Enhanced

Painting Fool” system, and we were lucky enough to win the competition. The team consisted of Dr.

Simon Colton, Ir. Michel Valstar and Dr. Maja Pantic. Unfortunately Dr. Pantic was ill on the

competition day and could not attend. Figure 8.3 shows the portrait painted of this thesis’ author

during the demonstration, where he showed the emotion ‘disgust’. The original is shown in Figure

8.2.
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Figure 8.3: Portrait of the author showing his feelings during the Machine Intelligence Competition
2007.



Chapter 9

Applications to human facial behaviour

understanding

”No mortal can keep a secret. If his lips are silent, he chatters with his fingertips; betrayal oozes out

of him at every pore.”

Sigmund Freud

The detection and temporal analysis of atomic facial actions (i.e., AUs), has many applications to

behaviour analysis. Their relevance has already been studied intensively by cognitive scientists [Am-

badar et al., 2005, Bassili, 1978, de C. Williams, 2006, Ekman and Rosenberg, 2005, Hess and Kleck,

1990, Russell and Fernandez-Dols, 1997]. However, few works exist that use automatic analysis of

facial expressions to analyse human behaviour analysis.

In section 9.1 we will discuss previous work related to understanding of human spontaneous behaviour

using FACS. While the majority of the efforts in automatic facial expression recognition have been

designed to deal with unnatural, posed expressions, the works discussed in section 9.1 have focused

on the understanding of facial expressions that occur involuntarily, usually in real-world situations.

In the literature, these expressions are referred to as spontaneous expressions, while the expressions

that are performed deliberately are referred to as posed expressions. In this thesis we will adhere to

that terminology.

Furthermore, in this chapter we will discuss two studies that we carried out to investigate how well

our system for the automatic analysis of AUs and their temporal dynamics can be applied to address

137
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various aspects of behaviour analysis. To wit, in section 9.2 we use the temporal dynamic aspects of

AUs and motion patterns of tracked facial points to distinguish posed from spontaneous brow actions

and in section 9.3 we investigate the possibilities of a multi-cue approach to posed vs. spontaneous

smile detection.

9.1 Related work in automatic spontaneous facial expression anal-

ysis

In the same period in which the work presented in this thesis was carried out, there have been

only two other research groups which addressed the recognition of spontaneous facial expressions.

The first group to address this issue was that of Bartlett from the University of California, San

Diego in 2003. This was followed shortly after by the group of Jeffrey F. Cohn at the University of

Pittsburgh/Carnegie Mellon University who published their first paper on this topic in 2004.

The work by Bartlett presented in 2003 [Bartlett et al., 2003] followed a similar approach as presented

by that group for the detection of posed expressions [Bartlett et al., 1999]. They mentioned that one

of the greatest challenges in spontaneous facial expression analysis is being able to cope with 3D

rigid head motion, especially out of plane rotation. To this end they used a 3D face model (of which

unfortunately no details or references were given), to separate rigid from non rigid facial motion and

register the face to a frontal view. However, 8 facial points had to be manually annotated in every

frame to estimate the head pose. The back-projected frontal view of the face, retrieved after face

registration, was convolved next with a bank of Gabor filters. The magnitude responses of the filters

were used as the input to first train SVMs. The output of the SVMs (the distance to the hyperplane

for a given example) was then input to a HMM in order to incorporate a model of time in the AU

recognition system. The proposed system was able to recognise AU45 (blink), AU1+AU2 (brow raiser)

and AU4 (brow lowerer), with 98.2%, 75%, and 78.2% classification rate, respectively. They did not

report on recall, precision or F-measure. The utilised dataset was rather unbalanced, so these results

are not as good as they seem at first glance. For example, there were 62 brow raise examples of in total

244 examples, which would result in a classification rate of 74.6% if the classifier would not return a

single brow raise. This means that the reported 78.2% is very low indeed.

The paper presented by Cohn et al. in 2004, [Cohn et al., 2004b], was based on the automated

facial image analysis system (AFA) presented earlier by the same group in [Tian et al., 2001], which

was described in section 2.2.1 of this thesis. The system was extended with a headtracker that

uses a cylindrical semi-3D face model to estimate the head pose and register the face accordingly
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[Xiao et al., 2003]. This is essential for dealing with spontaneous expressions, where a considerable

amount of rigid head motion is to be expected. The head pose values were combined together with

the geometry based features and the Gabor filter appearance based features into one feature vector.

Discriminant analysis was used as the classification method. The system was able to recognise two

different AU combinations; AU4 (brow lowerer) and AU1+AU2 (brow raiser) with 60% and 82%

classification rate, respectively, on a dataset taken from 101 different subjects. Although the eyebrows

are the facial features which are easiest to track and the AU combinations AU1+AU2 and AU4

represent one of the easiest brow actions to discriminate from each other, the results remain significant

considering that this was only the second attempt to recognise spontaneous facial actions ever.

The system proposed by Bartlett et al. in 2006 [Bartlett et al., 2006] was both an improvement and

a simplification of their 2003 version. The features and the SVM classification remain the same, but

they are now able to detect 20 AUs, with high accuracy. However, the system presented in this work

does not perform any 3D tracking and is therefore not able to deal with out-of-image-plane head

rotations. Translations and in-plane rotations are dealt with by detecting the irises and registering

the face image accordingly. Also, modelling of time by a HMM was removed.

In 2007 Lucey et al. presented a system that was able to detect 4 AU combinations in sponta-

neous expressions that contained large head rotations, including severe out-of-image-plane rotations

[Lucey et al., 2007]. This system employed Active Appearance Models (AAMs), which track facial

features using shape models and appearance based features simultaneously. Inspired by the hybrid

tracking approach, the authors use geometric features (the positions of the points in the tracked face

mesh) and appearance based features (pixel intensities of locations around facial points, both with and

without shape information) to recognise 4 different AU combinations in the upper face in spontaneous

data. An important shortcoming of AAMs is that they have to use a separate shape model for every

subject that the system will be used on. This means that it cannot directly operate on a novel subject;

it first needs to be given a face model of the new subject. Their proposed system could distinguish

between the classes AU1, AU1+AU2, AU4 and AU5, with an average classification rate of 70.5% per

class.

Cohn’s group used the same system to detect expressions of pain [Ashraf et al., 2007]. The data con-

sisted of video clips for 129 subjects who suffered from shoulder pains. When visiting a physiotherapist

they had to rotate their shoulder and report their pain on a Visual Analog Scale. The videos were

also rated by expert pain identifiers and scored on a 5-point Likert scale by them. The proposed

system did not recognise AUs before detecting pain. Instead, it used the same features as presented

in [Lucey et al., 2007] directly as input to a linear SVM to detect the pain. The authors reported a
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81.2% hit rate and a 81.2% classification rate when trying to score the same as the expert.

The work proposed by Littlewort et al. [Littlewort et al., 2007] on the other hand, does use the AU

detection to analyse pain. The goal of their system was to distinguish expressions of posed pain from ex-

pressions of real pain. To achieve this, they use the same system as described in [Bartlett et al., 2006].

That system used a separate SVM for each AU to be detected. To distinguish between posed and fake

expressions of pain, they use the real-valued output of the SVMs. These outputs were fed to another,

higher-level SVM, which decided if the expression of pain was real. The system was reported to attain

a level of 72% accuracy, compared with 52% accuracy by naive human judges.

9.2 Posed vs. spontaneous brow actions: automatic detection

This section reports on a method that we propose for automatic discrimination between posed and

spontaneous facial expressions using temporal dynamics of brow actions. We focus on brow actions in

this section because they are frequent in the repertoire of human facial behaviour, they are relatively

easy to track even under challenging conditions and we have a large number of data examples of both

spontaneous and posed brow actions.

The brows are often lowered in displays of affective states like anger and fear and are often raised

in displays of surprise [Ekman et al., 2002]. Brow lowering is also frequently present in displays of

psychological and cognitive states like pain [de C. Williams, 2002], fatigue [Veldhuizen et al., 2003],

concentration and puzzlement [Cunningham et al., 2004]. Brow raising is typical for various so-

cial signals including greetings [Kendon, 1973], interest [Flecha-Garcia, 2001], and (dis-)agreement

[Cunningham et al., 2004]. It may also provide emphasis for speech acts, or contribute to the regula-

tion of turn-taking (like in query) in social interactions [Flecha-Garcia, 2001].

To capture brow action dynamics, we track 8 characteristic facial points in frontal face video and com-

pute their displacements. The points in question are B,B1, D,D1, E,E1, H and H1 (see Fig. 4.1):

the inner and the outer corners of the eyebrows (D,D1, E,E1) , the inner corners of the eyes (B,B1),

and the outer corners of the nostrils (H,H1). Due to data privacy constraints, we had to use two dif-

ferent trackers to track the facial points in the videos. The first, used for the confidential data by prof.

Jeffrey Cohn’s group in Pittsburgh, is the FACE-III tracker created by Xiao et al. [Xiao et al., 2003].

The second tracker is the Particle Filtering with Factorised Likelihoods tracker presented in chapter 5,

which was used to track the facial points in all non-confidential videos.

Using the tracking data, we first detect the presence (i.e., activation) of AU1, AU2 and AU4. For each
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activated AU, we determine the temporal segments (neutral, onset, apex, and offset). To detect the

activated AUs and their temporal segments, we use the AU detector and temporal segment analyser

described in chapters 6 and 7, which combines GentleBoost ensemble learning, SVMs, and HMMs.

We compute further a set of mid-level feature parameters for every temporal segment of each activated

AU. These include the segment duration, the mean and the maximum displacements of the four brow

points in x- and y-directions, the maximum velocity in x- and y-directions, and the asymmetry in the

displacement of the brow points. We also compute the 2nd order polynomial functional representation

of the displacements of the brow points and the order in which the AUs have been displayed.

We use GentleBoost to learn the most informative parameters for distinguishing between spontaneous

and posed AUs and use these to train a separate Relevance Vector Machine (RVM) [Tipping, 2000] for

each temporal segment of each of the three brow-action-related AUs (i.e. 9 GentleRVMs in total). The

outcomes of these 9 GentleRVMs are then combined and a probabilistic decision function determines

the class (spontaneous or posed) for the entire brow action.

When trained and tested on a set containing 60 examples of posed facial displays from the MMI Facial

Expression database [Pantic et al., 2005b], 59 examples of posed facial displays from the Cohn-Kanade

Facial Expression database [Kanade et al., 2000], and 70 examples of spontaneous facial displays from

the DS118 dataset [Rosenberg et al., 1998], the proposed method attained a 90.7% correct recognition

rate when determining the class (spontaneous or posed) of an input facial expression.

In the following sections we will give a detailed explanation of our posed vs. spontaneous brow action

recognition system. Section 9.2.1 describes how we extract a set of geometric features. In section 9.2.2

we will then describe our classification strategy, that uses an array of Relevance Vector Machines to

attain a probabilistic posterior probability of the classes posed and spontaneous brow action. Finally,

in section 9.2.3 we provide a detailed evaluation of our proposed method.

9.2.1 Mid-level feature parameters

Our choice of mid-level feature parameters to be used for automatic discrimination between sponta-

neous and posed brow actions is largely influenced by a number of studies in psychology on spontaneous

(produced in a reflex-like manner) and volitional (deliberately produced) smiles. We believe that these

parameters could very well be characteristic for posed or spontaneous brow actions too.

Many of these features describe the temporal dynamics of facial actions. The body of research

in cognitive sciences, which suggests that the temporal dynamics of human facial behaviour (e.g.
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the timing and duration of facial actions) are a critical factor for interpretation of the observed

behaviour, is large and growing [Ambadar et al., 2005, Bassili, 1978, Hess and Kleck, 1990]. Facial

expression temporal dynamics are essential for categorisation of complex psychological states like

various types of pain and mood [de C. Williams, 2002]. They are also the key parameter in differenti-

ation between posed and spontaneous facial expressions [Ekman, 2003, Ekman and Rosenberg, 2005,

Hess and Kleck, 1990]. For instance, it has been shown that spontaneous smiles, in contrast to posed

smiles (such as a polite smile), are slow in onset, can have multiple AU12 apices (multiple peaks in the

mouth corner movement), and are accompanied by other AUs that appear either simultaneously with

AU12 or follow AU12 within 1s [Cohn and Schmidt, 2004]. Below we summarise the most important

findings:

Intensity : The early study of Ekman and Friesen on felt and false smiles suggested that the in-

tensity of contractions of the zygomaticus major (i.e., the muscle running under the cheek that

is responsible for lip corner retraction in smiles) is important in distinguishing between felt and

‘phony‘ smiles [Ekman and Friesen, 1982]. Cohn and Schmidt further confirmed this finding, re-

porting that posed smiles have greater amplitude than spontaneous smiles [Cohn and Schmidt, 2004,

Schmidt et al., 2006].

Duration: Ekman and Friesen found that spontaneous smiles usually last between 2
3 and 4 sec-

onds [Ekman and Friesen, 1982]. Hess and Kleck extended these findings and found that deliber-

ate smiles are shorter in total duration than spontaneous smiles [Hess and Kleck, 1990]. Cohn and

Schmidt further confirmed these findings [Cohn and Schmidt, 2004, Schmidt et al., 2006]. Fogel et

al. [Fogel et al., 2006] found that even a complex family of different smiles can be defined based on

the differences in duration and amplitude of the relevant smiles.

Trajectory : Ekman and Friesen reported that in deliberate expressions the onset is often abrupt, the

apex held relatively long, and the offset is either abrupt and/or appears irregular rather than smooth

[Ekman and Friesen, 1982]. Hess and Kleck confirmed these observations and reported that in compar-

ison to deliberate smiles, spontaneous smiles are slower in onset and offset time [Hess and Kleck, 1990].

Cohn and Schmidt reported that spontaneous smiles are slow in onset [Cohn and Schmidt, 2004,

Schmidt et al., 2006] and they also found that they may have multiple apices [Cohn and Schmidt, 2004].

Symmetry : Ekman et al. [Ekman et al., 1981] reported that spontaneous smiles are more symmetrical

than those made deliberately. In one study they found that smiles in response to watching an amusing

film were in 96% of cases symmetrical. This finding has been later confirmed by different researchers

[Cohn and Schmidt, 2004, Schmidt et al., 2006].
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Co-occurrences: Evidence that in spontaneous smiles the activity of the zygomaticus major is accom-

panied by the activity of the orbicularis oculi (i.e., the muscle orbiting the eye which when contracted

produces crow-feet wrinkles around the outer corner of the eye) dates from the 19th century Duchenne

de Boulogne [de Bologne, 1862], in whose honour the smiles incorporating orbicularis oculi activa-

tion are called Duchenne’s smiles. Duchenne’s proposal has been revisited many times by researchers

like Charles Darwin, Paul Ekman, and many others. Recent studies by Cohn and Schmidt extend

these findings and suggest that the activity of zygomaticus major (AU12) may be accompanied not

only by the activity of orbicularis oculi (AU6) but also by activity of other AUs that appear either

simultaneously with AU12 or follow AU12 within 1s [Cohn and Schmidt, 2004].

As suggested by Ekman [Ekman, 2003], the findings about spontaneous and posed smiles may be

extendable to a wider set of facial actions. In this study we present our research to check Ekman’s

proposal for the case of brow actions. To the best of our knowledge, this is the first study that checks

Ekman’s proposal, as far as brow actions are concerned.

We use our AU activation and temporal analysis system presented in chapters 6 and 7 to detect

the temporal phases of the brow AUs AU1, AU2 and AU4. For every temporal segment (neutral,

onset, apex, offset) of each activated AU, we calculate a number of mid-level feature parameters based

on the displacements of facial fiducial points Pi, where i = [1 . . . 4]. For further processing we are

interested only in brow actions. Therefore we only consider the displacements of points D,D1, E,E1

(Fig. 4.1). Let us name these points P2, P3, P1 and P4 for convenience (note the order of the points).

For a temporal segment d consisting of n frames, we will have signals si,t = {f1(Pi, t), f2(Pi, t)} (see

the feature definitions in section 5.3), where t = [1 . . . n] is a frame of the temporal segment d. The

function f1(Pi, t) returns the x-position of point Pi at time t and f2(Pi, t) the y-position of that point

at that time. Thus, for the entire temporal segment d, we will have a set of signals Si = {si,1, . . . , si,n}
for each facial point Pi, i = [1 . . . 4], resulting in a total of Nd = 4 × n signals.

For each signal Si corresponding to point tracking result Pi, and for both the y- and x-directions,

we first compute the maximum and the mean point displacement (relating to the intensity of brow

actions), and the maximum and the mean velocity of these displacements (relating to the speed and

the trajectory of AU activations). We do so as follows:
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fm1(Si) = max(Si) (9.1)

fm2(Si) =

∑

i Si

n
(9.2)

fm3(Si) = max

(

si,t − si,t−1

v

)

∀t ∈ [1 . . . n] (9.3)

fm4(Si) =

∑

t(si,t − si,t−1)

(n− 1)v
(9.4)

where v is again the framerate of the source video. Next, for the pairs of the brow points P1, P4

and P2, P3, we compute a measure of symmetry. We say that a given brow action is symmetric in

x-direction if the relevant brow points move an equal distance towards each other or away from each

other. Otherwise, the brow action in question is asymmetric. We say that a given brow action is

symmetric in y-direction if the relevant brow points traverse an equal distance either upwards or

downwards. Otherwise, the brow action in question is asymmetric. As the measure of symmetry in

y-direction we use mid-level feature parameter fm5 defined by equation (9.5) and as the measure of

symmetry in x-direction we use mid-level feature parameter fm6 defined by equation (9.6),

fm5(Pi, Pj) =
∑

t

{|f1(Pi, t) − f1(Pj , t)|} (9.5)

fm6(Pi, Pj) =
∑

t

{|f2(Pi, t) + f2(Pj , t)|} (9.6)

Next, we describe the overall displacement of a facial fiducial point within the temporal segment d as

a function of time g(t) = at2 + bt + c, where t = [1 . . . n] is a frame of the temporal segment d and

g(t) = si,t, analogous to the Local-Time-Parameterised features described in section 5.3.3. Thus, for

each Si, and for both the y- and x-directions, we define the following mid-level feature parameters

(relating to the trajectory of AU activations):

fm7(Si) = a (9.7)

fm8(Si) = b (9.8)

fm9(Si) = c (9.9)
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Finally, the total duration of a temporal segment d (i.e., n) and the occurrence order o of the temporal

segment within the entire image sequence (o = 1 if d was the first temporal segment of the first

activated AU, otherwise o > 1) are used as mid-level feature parameters as well.

fm10(d) = n (9.10)

fm11(d) = o (9.11)

Thus, for each temporal segment of an activated AU, we calculate in total 62 features. Remember

that we use only four points, and that we compute the features fm7 . . . fm9 for both the x and y

components of the trackings.

9.2.2 Classification strategy

The tracking schemes that we utilise to track facial characteristic points in an input face image

sequence include a particle-filtering-based and an optical-flow-based tracking algorithm. Although we

have aimed to achieve ‘best effort’ results, meaning that some of the input face image sequences have

been tracked more than once using slightly different initialisation parameters to remove any errors

that the tracker has made in earlier trials, noisy output from the tracking algorithms should still be

expected. In the case of the PFFL point tracker the noise in the output (occurring due to the particle

filtering nature of the tracker) is filtered out by applying a temporal filter that removes spurious peaks.

However, since the smoothed output of the tracker for a frame at time t is computed by taking the

mean of the tracker outputs in the range [t−2, t+2], some noise remains present in the output. For the

FACE-III head tracker, the noise in the facial point tracking data occurs mostly due to inaccuracies

in registration as well as due to the applied re-registration process.

This noise in point tracking data is propagated further, resulting in noisy feature-based and mid-level

parametric representations of the input data. Eventually, this will influence the predictions of whether

a given temporal segment belongs to a spontaneous or to a deliberate brow action. In order to deal

with the imperfect data and generate predictions about whether a given temporal segment belongs

to a certain class (spontaneous or posed) so that the confidence measure associated with it varies in

accordance with the accuracy of the input data, we employ Relevance Vector Machines (RVMs).

A RVM classifier is a probabilistic sparse kernel model identical in functional form to a SVM classifier

[Tipping, 2000]. In their simplest form, RVMs attempt to find a separating hyperplane defined as a
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weighted combination of a few relevance vectors that divides data samples of two different classes.

In RVM, a Bayesian approach is adopted for learning, where a prior is introduced over the model

weights, governed by a set of hyperparameters, one for each weight. The most probable values of

these hyperparameters are iteratively estimated from the data. The solution is sparse because the

posterior distributions of many of the weights are sharply peaked around 0.

Unlike the SVM, the nonzero weights of RVM are not associated with examples close to the decision

boundary, but rather appear to represent prototypical examples of classes. These examples are called

relevance vectors and, in our case, they can be thought of as representative displays of either posed

or spontaneous brow actions.

The main advantage of an RVM is that while its generalisation capacity is comparable to that of an

equivalent SVM, it uses substantially fewer kernel functions. Furthermore, predictions in RVM are

probabilistic, in contrast to the deterministic decisions provided by SVM. Therefore it is more natural

to use RVMs in a larger probabilistic framework. The major disadvantage of RVMs on the other hand

is that they take a very long time to train.

In their original form, RVMs are suitable for solving two-class classification problems. Since for each

temporal segment of a brow action we want to determine whether it has been displayed spontaneously

or deliberately, our problem is a set of L two-class classification problems. Hence, we use L RVMs,

each of which predicts whether a given temporal segment of a specific brow action has been displayed

spontaneously or not. In our case L = 9 since we have three AUs related to brow actions (i.e., AU1,

AU2, AU4), each of which can be in one of the three temporal phases (i.e., onset, apex, offset). We

use GentleBoost to select a set of mid-level feature parameters from equations (9.1)-(9.11) that are

most informative for distinction between the 9 classes. Then, we train the RVMs to perform binary

decision tasks using one-versus-all partitioning of data resulting from the feature selection stage. As

a kernel, we use the standard Gaussian radial basis function. For each fold of the cross validation test

procedure, the kernel width has been optimised independently of the test data.

Thus, for an input image sequence I in which m temporal segments dt of brow actions have been

identified by the AU temporal analysis system defined in section 7, we will have m predictions ct (one

for each dt), each of which is associated with a confidence measure pt ≥ 0, where ct ∈ {−1, 1} (i.e.,

−1 for posed and 1 for spontaneous) and t = [1 . . .m]. Then, the class c ∈ {−1, 1} for the entire brow

action shown in the input video I is predicted with a confidence measure Pc ≥ 0 in the following way:
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κ =

m
∑

t=1

ptct (9.12)

C(κ) = sign(κ) (9.13)

P (κ) = |(κ)| (9.14)

9.2.3 Evaluation

In our study, we used a set containing 60 examples of posed facial displays from the MMI Facial

Expression database (section 3.4, [Pantic et al., 2005b]), 63 examples of posed facial displays from

the Cohn-Kanade Facial Expression database [Kanade et al., 2000], and 139 examples of spontaneous

facial displays from the DS118 dataset [Rosenberg et al., 1998]. When we selected this data, we

took care that samples of various brow actions were picked from the three databases with the same

frequency.

The DS118 dataset has been collected to study facial expression in patients with heart disease. Subjects

were 85 men and women with a history of transient myocardial ischemia who were interviewed on two

occasions at a 4-month interval. They averaged 59 years of age (std = 8.24) and were predominantly

Caucasian. Spontaneous facial expressions were video-recorded during a clinical interview that elicited

AUs related to disgust, contempt, and other negative emotions as well as smiles. The brow actions

displayed in the data are often very subtle. Due to confidentiality issues, this FACS-coded dataset is

not publicly available.

To evaluate the proposed method for automatic discrimination between spontaneous and deliberate

brow actions, we used 119 examples of posed brow actions and 70 examples of spontaneous brow

actions for which our system for automatic recognition of AUs and their temporal segments generated

correct AU event detection results (compared to the ground truth).

Although the aim of this study is not to evaluate the performance of a fully automated system for

spontaneous and posed brow action detection, but to investigate whether posed brow actions can be

automatically distinguished from spontaneous brow actions based on the temporal dynamics of these

actions, we would like to make few remarks about the AU recognition results attained by our AU

detector. The version of the AU detector that we used in this study has been trained using only

samples of posed facial displays from the MMI database. Hence, it is not surprising that for deliberate

facial displays, it achieved high recognition rates. More specifically, from 123 initially used samples

of posed brow actions, 119 have been correctly AU-coded by our system, resulting in 96.7% correct
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Class # Mid-level parameters

AU1-on 7 fm3(S3,y) fm7(S4,x) fm1(S1,x)
AU1-ap 6 fm1(S1,x) fm8(S3,y) fm3(S2,y)
AU1-off 11 fm3(S3,y) fm11(d) fm1(S11,x)
AU2-on 3 fm1(S1,x) fm2(S4,x) fm9(S3,x)
AU2-ap 2 fm2(S4,x) fm11(d)
AU2-off 13 fm1(S1,x) fm3(S3,y) fm9(S3,x)
AU4-on 1 fm1(S3,y)
AU4-ap 14 fm1(S1,x) fm2(S3,y) fm11(d)
AU4-off 14 fm1(S3,y) fm11(d) fm1(S4,x)

Table 9.1: Mid-level feature parameters that GentleBoost selected as the most informative for deter-
mining whether a detected temporal segment d of an activated AU has been displayed spontaneously
or not. The 1st column lists the 9 relevant classes, the 2nd column lists the total number of mid-level
parameters selected by GentleBoost for the relevant class, and the 3rd column lists the three most
informative of the selected parameters defined by equations (9.1)-(9.11)

classification rate.

Second, it is also not surprising that for spontaneous facial actions, an AU detector trained on delib-

erate facial actions achieves lower recognition rates. From 139 initially used samples of spontaneous

brow actions, 70 have been correctly AU-coded by our system, resulting in 50.4% correct recognition

rate. Although this is not a very good result, it is promising, especially when one takes into account

that the system was not trained on samples of spontaneous brow actions and that current studies on

automatic AU-coding of spontaneous facial data reported correct recognition rates ranging from 26%

[Bartlett et al., 2006] to 76% [Cohn et al., 2004b] for brow actions.

To evaluate the proposed method for automatic discrimination between spontaneous and deliberate

brow actions using the 189 data samples as explained above, we performed a leave-one-subject-out

cross validation. For each of the 9 two-class classification problems (i.e., whether onset, apex, and

offset of AU1, AU2, and AU4, is spontaneously displayed or not), Table 9.1 lists the mid-level feature

parameters that GentleBoost selected as the three most informative for distinction between the 9

classes. As can be seen from Table 9.1, Ekman’s proposal that the findings about posed and spon-

taneous smiles may be extendable to other facial actions [Ekman, 2003], proved to be correct in the

case of brow actions. In brief, the properties of the temporal dynamics of brow actions that help in

distinguishing spontaneous from deliberate facial expressions are:

1. maximal displacement of the relevant facial points (relating to the intensity of shown AU),

2. maximal velocity of this displacement (relating to the speed and the trajectory of AU activation),

and
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AU onset apex offset

1 0.797 0.703 0.843
2 0.833 0.532 0.863
4 0.751 0.694 0.789

Table 9.2: Correct classification rates attained by 9 RVMs using the mid-level feature parameters that
the Gentle Boost selected as the most informative for the classification problem in hand, i.e., deter-
mining whether a detected temporal segment of an activated AU has been displayed spontaneously or
not.

Classification rate 0.908 Total spontaneous: 70
Recall 0.829 Correct spontaneous: 58

Precision 0.921 Total deliberate: 114
F1-measure 0.873 Correct Deliberate: 109

Table 9.3: Final classification results achieved by the probabilistic decision function defined by equation
(9.13) for the entire brow actions shown in an input face image sequence. For the purposes of computing
the recall and precision, the spontaneous class was considered the target class.

3. the occurrence order of the action within the image sequence (relating to co-occurrences of AUs).

The symmetry of facial actions, reported to be an important parameter for distinguishing spontaneous

from posed smiles did not appear to be important in the case of brow action. That at least must be

our conclusion given our data and the methods we have used to extract information from it about the

brow action symmetry.

Table 9.2 summarises the results of evaluating the performance of 9 GentleRVMs using the leave-one-

subject-out cross validation. These results can be read as follows: the higher the recognition rate for a

certain temporal segment, the more informative the segment is for distinguishing between spontaneous

and deliberate brow actions. Hence, onset and offset phases are very important in distinguishing

voluntary from involuntary brow actions while the apex phase does not contribute much (or not at

all in the case of AU2) to the process. This finding reconfirms and reinforces the observation that

temporal dynamics of facial actions play a crucial role in distinguishing spontaneous from deliberate

facial displays given that the apex phase of a facial action can be regarded as static in the sense that

the shape and appearance of a face do not change during this phase.

Table 9.3 summarises the final classification results achieved by the probabilistic decision function

defined by equation (9.13). These results clearly indicate that the proposed method is effective for

distinguishing voluntary from involuntary brow actions.

It is interesting to note that the achieved correct classification rate is much higher (90.8%) for the

event coding where the event is the entire brow action displayed in the input video than for the
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event coding where the event is one of the temporal segments of one of the displayed brow actions

(75.6% on average, from Table 9.2). This reconfirms once again the finding that temporal aspects

of facial displays are important in distinguishing voluntary from involuntary facial expressions. More

specifically, the observed difference in the achieved correct classification rates can be read as follows.

Even brief observations of facial behaviour are sufficient to make rather accurate judgements on

deliberateness of the shown facial signals. When observations are longer, cues at a higher semantic level

become available, revealing temporal relations between isolated cues extracted from fleeting glimpses

of behaviour and leading to greater prediction accuracy.

This reminds (partially) of observations made in the study on thin slices of behaviour, which suggests

that human judgements of very short observations of behaviour may be less accurate but that for

observations lasting 30 seconds or longer, the judgements are accurate and do not become significantly

more accurate as the length of the observations increases [Ambady and Rosenthal, 1992]. We could

not confirm or reject the latter assumption for the case of judgements made by a computer system

rather than by a human observer, since the examples of facial behaviour used in our study were short,

lasting 5 to 35 seconds.

We also measured the effect of incorporating confidence measures pt into the final decision function

defined by equation (9.12). To do so, we evaluated the performance of the proposed method using

a redefined final decision function such that (9.12) is redefined as γ =
∑m

t=1 ct to leave out the

confidence. The attained correct classification rate then dropped to 87.0%, a decrease of almost 4%

in correspondence to the correct classification rate realized when using the originally proposed final

decision function. This clearly shows the benefit of using a probabilistic decision function rather than

a deterministic final decision function.

9.3 Posed vs. spontaneous smiles: multi-cue automatic detection

Psychological research findings suggest that humans rely on the combined visual channels of face and

body more than any other channel when they make judgements about human communicative behaviour

[Ambady and Rosenthal, 1992]. However, as discussed in chapter 2, most of the existing expression

analysers are monomodal and target human facial affect analysis by learning to recognise a small set of

prototypical emotional facial expressions such as happiness and anger [Pantic and Rothkrantz, 2003,

Pantic and Bartlett, 2007]. Exceptions from this overall state of the art that do treat facial and bodily

cues together include works that combine facial and bodily cues [Gunes and Piccardi, 2007] or facial,

bodily and vocal cues [Karpouzis et al., 2007] to detect emotions. Works that attempt to detect non-
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prototypical facial expressions include few tentative efforts to detect attitudinal and non-basic affective

states such as fatigue [Gu and Ji, 2004] or pain [Bartlett et al., 2006] from face video. As discussed in

chapter 2, there exist a number of promising systems that are capable of detecting 15 to 27 AUs.

In addition, independently of whether the approach is AU- or affect-oriented, most of the past work

on automatic facial expression analysis is aimed at the analysis of posed (i.e., volitionally displayed)

facial expression data. The short list of papers described in section 9.1 is practically exhaustive, only

a number of conference papers whose contents were covered by the same authors in a follow-up journal

paper and two paper by the author of this thesis were omitted. However, to the best of our knowledge,

no vision-based system exists yet that is based on FACS, takes multiple behavioural cues into account

(e.g., facial, head an shoulder gestures), and automatically discerns between posed and spontaneous

expressions.

Also, none of the systems discussed in section 9.1, which can handle spontaneous data, take the

temporal dynamics of facial actions into account, not in the computation of their features nor in

the design of their classification procedures. The notable exception is the first work on spontaneous

expressions [Bartlett et al., 2003], that uses Hidden Markov Models for AU activation detection. Some

of the works described in section 9.1 (e.g. [Littlewort et al., 2007]) do acknowledge cognitive scientists’

findings which indicated that the temporal behaviour of facial expressions is of paramount importance

to human action understanding, yet they chose to ignore that aspect of the problem. Our proposed

method, on the other hand, focuses explicitly on the temporal dynamic aspects of facial expressions.

Overall, computer vision and human-computer interaction (HCI) communities have not adequately

exploited the expressive information carried by the body modality [Hudlicka, 2003]. Attempts to

recognise affective body movements are few and efforts are mostly on the analysis of posed body

actions without considering the facial actions (e.g., [Camurri et al., 2005]). Static postures of acted

emotions were recorded by De Silva et al. [Silva et al., 2005] using a motion capture system, but the

authors did not attempt to recognise the postures automatically.

Although it has been commonly stated that reliable assessment of human affect requires the concurrent

use of multiple cues or modalities [Hudlicka, 2003], relatively few works have focused on implement-

ing affect recognition systems using multi-cue or multimodal data [Pantic et al., 2005a]. Gunes and

Piccardi [Gunes and Piccardi, 2007] presented an approach to bimodal recognition of posed expres-

sions of emotions by recording face and body gestures simultaneously using two cameras. Kapoor

and Picard focused on the problem of detecting the affective states of high-interest, low-interest and

refreshing in a child who is solving a puzzle [Kapoor and Picard, 2005]. They combined sensory in-

formation from the face video, the posture sensor (a chair sensor) and the game being played in a
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probabilistic framework. Karpouzis et al. [Karpouzis et al., 2007] fused data from facial, bodily and

vocal cues using a simple recurrent network to detect emotions. Cohn et al. [Cohn et al., 2004a]

conducted a multi-cue analysis of spontaneous smiles, comparing data from the face and the head

modalities. However, in that study no fusion of the data was carried out. The work represents a

behavioural science study rather than an attempt to automate human affect recognition from multi-

ple visual cues. The study showed that there exists a correlation between the two modalities. The

major findings reported by these works were: when recognising affective states from multimodal non-

verbal data, body gestures or postures provide better information than other cues (i.e., face), and

the fusion of multiple cues and modalities significantly outperforms classification using the individual

modalities [Gunes and Piccardi, 2007, Kapoor and Picard, 2005].

In this section we propose a method for automatic, multi-cue, vision-based discrimination between

posed and spontaneous smiles. We focus on smiles because of their importance in human development

and communication. Developmentally, smiles are one of the first emotion expressions to appear,

they occur with relatively high frequency throughout the lifespan and they express a multitude of

meanings, including joy, appeasement and greetings, and they often serve to mask anger, disgust, and

other negative emotions [Cohn and Schmidt, 2004].

In this study, we explore the following three issues: Firstly, we want to know what the relative

importance of the face, the head and the shoulders are for the problem of posed vs. spontaneous smile

recognition. It is widely accepted that facial expressions reveal whether a display of affect is posed

or genuine [Cohn and Schmidt, 2004, Ekman, 2003, Hess and Kleck, 1990]. However, there is no such

consensus when it comes to the relevance of bodily motion.

Darwin argued that because our bodily actions are easier to control consciously than our facial ex-

pressions, the information contained in the signal of body movements should be less significant than

that contained in the facial expressions, at least when it comes to discerning spontaneous from posed

behaviour [Ekman, 2003]. Ekman however, argued that people do not bother to censor their body

movements [Ekman, 2003] and therefore, the body would be the more ‘leaky’ source. Ekman also

reported that a third of his subjects showed a fragment of a shrug when lying [Ekman, 2003]. Fur-

thermore, research in nonverbal behaviour and communication theory stated that deceptive behaviour

differs from truthful behaviour in that it lacks head movement [Buller et al., 1994] and illustrating

gestures which accompany speech [DePaulo, 2003, Vrij et al., 2000]. Distinguishing between posed

and spontaneous smiles can be seen as similar to the deception detection problem. Taking into ac-

count these observations, we expect to find valuable information concerning the nature of a nonverbal

expression (i.e., posed or spontaneous) in head and shoulder movements as well as in facial actions.
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Secondly, we want to investigate the importance of the temporal dynamics of human nonverbal be-

haviour within the problem of posed vs. spontaneous smile recognition. In section 9.2.1 we already

listed the research done by cognitive scientists when it comes to the importance of temporal dynam-

ics of facial actions. For the body modality, DePaulo et al. reported that deceivers’ body actions

appeared overcontrolled and abrupt [DePaulo, 2003]. Based on these findings, we focus on both the

morphological aspect (e.g., AU12, shoulder shrug, posture of the head, etc.) and on the temporal

aspect (e.g., speed, trajectory etc.) of the expressive face and body display and we expect that they

will play a significant role in the recognition of posed vs. spontaneous smiles.

Thirdly, we want to look into the effect that different multi-cue data fusion strategies have on the clas-

sification accuracy of posed and spontaneous smiles and compare these with monomodal classification

results. The fusion strategies differ from each other mainly in two aspects: the abstraction level of the

utilised features and the way in which the classification results are combined. Regarding the level of

abstraction, it is widely argued that feature-level fusion outperforms decision-level fusion in the field

of non-verbal human behaviour analysis [Pantic and Rothkrantz, 2003].

Designing optimal strategies for realising multi-cue and/or multi-cue data fusion is still an open

research issue. Various approaches have been proposed [Fumera and Roli, 2005, Kuncheva, 2002] in-

cluding the sum rule, product rule, weight-based fusion, maximum/minimum/median rule, majority

vote, etc. The first three techniques, namely, the sum, product and weight criteria were found to be

most effective and are analysed and compared here for this problem.

9.3.1 Tracking

We employ a different tracker for each modality: a Cylindrical Head Tracker to track the head mo-

tion [Xiao et al., 2003], Particle Filtering with Factorised Likelihoods to track 20 fiducial points in

the face (see section 5.1, [Patras and Pantic, 2004, Patras and Pantic, 2005]), and Auxiliary Particle

Filtering to track the shoulders motion [Pitt and Shephard, 1999]. From the 20 tracked facial points

we will only use 12 for this study. Fig. 9.2 shows the facial and shoulder points that we will use.

To capture the head motion we employ the Cylindrical Head Tracker developed by Xiao et al.

[Xiao et al., 2003]. The head tracker estimates the six degrees of freedom of head motion: hori-

zontal and vertical position in the scene, distance to the camera (i.e. scale), pitch, yaw and roll.

This is denoted as the set of parameters Th = {Th1 . . . Th6} with dimensions n × 6. Here n is the

number of frames of the input image. A cylindrical head model is manually fitted to the face region

in the first frame (see Fig. 9.1), and the face image is cropped and projected onto the cylinder as the
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Figure 9.1: Illustration of the tracking procedure and the points used to obtain the tracking data:
(a-c) for the head and shoulder modalities, and (d) for the face modality.

template of head appearance. For any given subsequent frame, the face template is projected onto

the image plane assuming that the pose has remained unchanged from the previous frame. Then, the

difference between the projected image and the current frame is computed, providing the correction of

the estimated head pose. Because the templates are updated during head motion recovery, the errors

of motion recovery accumulate over time. To tackle this problem, images of certain reference poses

are prepared and when the estimated head pose is close to that in the reference, the head image is

re-registered with the relevant reference image. The re-registration also enables the system to recover

the head pose when the head reappears after occlusion.

To capture all facial motion that is characteristic for smiles, we first track the 20 facial points as
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Figure 9.2: Tracked points Tf1 . . . Tf12 of the face and tracked points Ts1 . . . Ts5 of the shoulders.

described in section 5.1. From this set of points we select 12 points that we will use for this study.

From the mouth we use the mouth corners, the upper, and the lower lip. From the eyes we use the

inner and outer eye corners as well as the upper and lower eyelids. For this study, the facial points

were manually localised in the first frame of every video. We used the head tracker data to register

the images so that the face and its features (the facial points) have the same frontal position in every

frame. After selection of the points the facial point tracking scheme results for every image sequence

in a set of tracked points Tf = {Tf1 . . . Tf12} with dimensions n× 12 × 2.

The motion of the shoulders is captured by tracking 2 points on each shoulder and one stable point on

the torso, usually just below the neck (see Fig. 9.2. Often we chose a salient point on the clothes that

subjects wore). The stable point is used to remove any rigid motion of the torso (see section 9.3.3). We

use standard Auxiliary Particle Filtering (APF) [Pitt and Shephard, 1999] instead of PFFL because

it is less complex and faster than PFFL, it does not require learning the model of prior probabilities of

the relative positions of the shoulder points, while resulting in sufficiently high accuracy. The shoulder

tracker results in a set of tracked points Ts = {Ts1 . . . Ts5} with dimensions of n× 5 × 2.

9.3.2 Temporal segmentation

In chapter 7 we described how a facial muscle action can be divided into four phases. Just like facial ac-

tions, head an body actions can be in only one of the four possible phases at any time; the onset phase,

the apex phase, the offset phase, and (iv) the neutral phase. According to [Cohn and Schmidt, 2004,

Ekman, 2003] and reaffirmed in section 9.2, timing, duration and speed of facial actions are highly

important cues for distinguishing posed from spontaneous facial expressions. Especially the speed at
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which a facial expression develops or diminishes during the onset and offset phases respectively has

proved to be highly discriminative. In section 9.3.3 we will define these cues in terms of the speed of

tracked points or, in the case of the head, the angular and translational velocity of the entire head.

In order to be able to compute these cues, or attributes, separately for the onset, apex and offset

temporal segments of a face/body action, we first need to know when every temporal segment of every

modality begins and ends.

For the recognition of the temporal segments of the face, we use the method proposed in chapter 7.

We detect temporal segments for AU6, AU12 and AU13. This segmentation results in a number of

mf = mAU6 +mAU12 +mAU13 temporal segments for the face modality.

The temporal segments of the head and the shoulder modalities are obtained using a rule-based expert

system as we do not have the manually labelled temporal segment data for these modalities based on

which an automatic detector could be trained. The temporal segments are found as follows. We only

consider one action to be possible for the head and the shoulders, that is we only check if the head or

the shoulders are in their neutral position or not. We define:

qh1(t) = |δ(h1, t)| (9.15)

rh1(t) =
∣

∣

∣

dh1(t)

dt

∣

∣

∣
(9.16)

qh2(t) = |δ(h2, t)| (9.17)

rh2(t) =
∣

∣

∣

dh2(t)

dt

∣

∣

∣
(9.18)

where h1 = {Th4, Th5, Th6} is the time series of pitch, roll and yaw and h2 = {Th1, Th2, Th3} is the

vector of the head positions. Both are subsets of Th. Now, for each time t we say that the head is

in its neutral phase if both the angle difference and the head translation are close to zero, that is,

IFF (if and only if) qh1 < θ1 AND qh2 < θ2. If the head is not in its neutral phase, we continue to

check whether the head is in its apex phase, that is, whether the angular velocity or the translational

velocity are sufficiently close to zero. This is the case IFF rh1 < θ3 AND rh2 < θ4. If the head is

neither in its neutral nor in its apex phase, we check the sign of the first derivative to time of the

angular motion d(δ(rh1, t))/dt and the current position of the head. If the head is moving away from

its neutral position, we assign the onset phase, otherwise we assign the offset phase. This results in

mh temporal segments for the head modality.

Similarly, for the shoulders, we find
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ds1(t) = |δ(s1, t)| (9.19)

ms1(t) =
∣

∣

∣

ds1(t)

dt

∣

∣

∣
(9.20)

ds2(t) = |δ(s2, t)| (9.21)

ms2(t) =
∣

∣

∣

ds2(t)

dt

∣

∣

∣
(9.22)

where s1(t) denotes the angle made by the horizontal axis and the line connecting shoulder points Ts1

and Ts2 at time t and s2(t) is the angle made by the horizontal axis and the line connecting shoulder

points Ts3 and Ts4 at time t. The temporal phases of the shoulder actions are now found in the same

way as described above for the head, resulting in four more thresholds θ5 . . . θ8. This way we find ms

temporal segments for the shoulder modality, and in total m = mf +mh +ms temporal segments for

all modalities together. The values of the thresholds θ1 . . . θ8 were found using cross validation during

training. This way we avoid overfitting of the threshold values to our data.

9.3.3 Fusion strategies

One of the goals of this study is to investigate the effects on the recognition accuracy of using different

levels of abstraction at which features are defined, different abstraction levels of the classification

schemes (i.e. only one classifier working directly on features, or multiple classifiers working in layers

after each other), and different fusion rules. In order to achieve this, we implement three different

fusion strategies to tackle the problem of multi-cue posed vs. spontaneous smile recognition: early,

mid-level and late fusion. We distinguish two levels of feature abstraction here. Early fusion uses

low-abstraction features while mid- and late level fusion use high-abstraction features. In the next

subsections, we will describe each fusion strategy in detail, including the definition of the attributes

used for each.

Early fusion

In early (also called feature-level) fusion, the elementary attributes of each visual cue are combined

into a single low-abstraction feature vector, which serves as the input to one classifier. In our case, the

elementary attributes are simple operations on the tracking data, such as the distances between two

tracked points or the current angular velocity of the pitch of the head. All the features are computed
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and passed to the classifier on a per-frame basis, resulting in a time-series of classification predictions

y with length n for every input video.

From the head modality we simply used the output from the tracker (see section 9.3.1):

fh = Th (9.23)

From the face modality, we concatenated the x - and y-values of all tracked points, the distances

between all pairs of points and the angles between the line connecting two points and the horizontal

axis. Thus we create for the face the following feature vector ff (t):

ff (t) = {f1(Tf1, t), . . . , f1(Tf12, t), (9.24)

f2(Tf1, t), . . . , f2(Tf12, t), (9.25)

f3(Tf1, Tf2, t), . . . , f3(Tf11, Tf12, t), (9.26)

f4(Tf1, Tf2, t), . . . , f4(Tf11, Tf12, t)} (9.27)

where Tfi(t) is the value of tracked facial point i at time t. See section 5.3 for the definitions of the

geometry-based features. For the shoulder modality, we defined the feature vector as follows:

fs(t) = {f4(Ts1, Ts2, t), f4(Ts4, Ts3, t), [δ(Ts1,y, t) + δ(Ts2,y, t)], [δ(Ts3,y, t) + δ(Ts4,y, t)]} (9.28)

See Fig. 9.2 for the numbering of the shoulder points. To obtain our final feature vector used in early

fusion, we first concatenated the above attributes as f = {fh, ff , fs}. Then, we defined

Fe(t) = {f(t), df(t)/dt, δ(f, t)} (9.29)

In this definition of our features, we denominated the first term of the right hand side of eq.(9.29) as

the static features and the second and third terms as the dynamic features.

The feature vector Fe(t) serves as input to a GentleSVM-Sigmoid classifier. This classifier performs

feature selection using GentleBoost and classification using SVMs, as discussed in chapter 6. Unfor-

tunately the output of an SVM is not a good measure for the posterior probability of its prediction.

Therefore we pass the output of the SVM to a sigmoid function that has been shown to provide a
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reasonable measure for the posterior probability [Platt, 2000]. We will refer to this feature selection-

classifier combination as a GentleSVM-Sigmoid classifier. The vector Fe(t) provides the tth element

of the time series of predictions, y(t). Under a Maximum-a-Posteriori (MAP) approach, y(t) must be

assigned to one of the two possible classes (posed or spontaneous), according to maximum posterior

probability.

Mid-level fusion

Mid-level fusion attains a higher level of data abstraction within every visual cue, yet we still fuse

all attributes into one vector, and use only one classifier. Often in mid-level fusion the elementary

attributes of early fusion are used to define a set of abstract symbols (such as AUs), or they are used

to compute more heuristic features. In our approach, we transform the elementary attributes derived

previously into both symbols and higher level features. The symbols we derive at this stage are the

temporal segments of the FACS Action Units AU6, AU12 and AU13 [Ekman et al., 2002] and the

temporal segments of the head and shoulder action. We refer to the combination of symbols and the

higher level features that describe timing aspects of the symbols as the high-abstraction features.

For each temporal segment, we define attributes based on the works of Cohn and Schmidt, Ekman, and

on the method proposed in section 9.2, [Cohn and Schmidt, 2004, Ekman, 2003]. These include the

morphology, speed, symmetry, duration, apex overlap (i.e., number of frames that two actions are in

apex simultaneously), trajectory of a face/body action and the order in which the temporal segment of

the different face/body actions occur. Similar to the case of early fusion, we concatenate the attributes

of all visual cues into one vector, which serves as the input to a GentleSVM-Sigmoid classifier. In

contrast with early fusion, which computed one feature vector per frame, we now compute one vector

per video, with every temporal segment of every symbol providing a fixed number of attributes.

Because the GentleSVM-Sigmoid classifier requires the input vectors to be of the same length, we

were forced to change our definition of the temporal segments. Face/body actions (especially when

displayed spontaneously) frequently have multiple apices before returning to its neutral position. This

is especially the case for spontaneous smiles. If left unchanged, this would lead to feature vectors of

variable length. We decided therefore to force any sequence of temporal segments into the temporal

pattern onset-apex-offset. To do so, we chose the apex segment with the longest duration as the apex

phase of our new forced temporal pattern. The frame at which the new — forced — onset starts is

chosen as the first non-neutral frame before the apex phase. Conversely, the end of the new forced

offset is chosen as the last non-neutral frame after the apex phase. The neutral segments are discarded

as, by definition, they do not contain any information. This results in k forced temporal segments for
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all visual cues together.

By enforcing this particular temporal pattern, we are aware of the fact that information about the

original temporal pattern of the symbols, such as multiple apices, is lost. To be able to still use this

information in the classification process, we compute a number of concurrency attributes M for every

video. The concurrency feature vector M is computed before we enforce the new temporal pattern and

contains the duration of all symbols, the order in which the symbols are activated and the duration

of overlap of every combination of apex phase symbols.

We thus define for every temporal segment of the forced pattern the following set of features. For

each segment of a face action (either AU6, AU12, or AU13) or shoulder action (motion) we define the

mean/max displacement and the mean/max velocity of the tracked properties during that segment

as:

gsymbol =

{

∑tm
t=t1

δ(T, t)

tm + 1 − t1
, max
t=t1...tm

δ(T, t),

∑tm
t=t1

d(T (t))/dt

tm2 + 1 − t1
, max
t=t1...tm

d(T (t))/dt

}

(9.30)

where t1 and tm are the first and the last frames of a temporal segment, respectively. T is the

tracking data of the eye points when considering AU6 symbols, the mouth points when considering

AU12 or AU13 symbols, the head tracking when considering head action symbols, and the shoulder

tracking data when considering shoulder action symbols. Additionally, for the face and shoulder cues

we compute the asymmetry value a. For the head cue, we define a to be always zero, as there is

no such thing as a symmetrical head action. The final feature vector for mid-level fusion is thus

found as the union of M , g and a for all symbols S, where S consists of all possible combinations

of {AU6,AU12,AU13, head action, shoulder action} and the forced temporal segments {onset, apex,

offset}:

Fm =

{

⋃

i∈S

(gi),
⋃

i∈S

(ai),M

}

(9.31)

Because the values of all features depend on the time parameters t1 and tm we consider all mid-level

parameters to be temporal dynamic.

Given the feature vector Fm, where Fm describes an entire smile, we again use a GentleSVM-Sigmoid

classifier to predict the class of the video under the previously described MAP approach.
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Late fusion

Late fusion is similar to mid-level fusion in the sense that we again attain a high level of data ab-

straction within every visual cue. However, in the case of late fusion we also attain a higher level

of abstraction for the classification procedure, computing a separate posterior probability for each

symbol (i.e. for each temporal phase of each AU, shoulder action and head action). This removes the

need to enforce the strict onset-apex-offset temporal pattern used in mid-level fusion. Indeed, we will

use all m temporal segments, collected from all visual cues. In this way we obtain a variable number

of predictions y for every video. This enables the system to discard a cue when needed (e.g., when the

shoulders move out of view), as the fusion rules we employ are invariant to the number of inputs. We

compute one extra posterior probability that encodes temporal dynamic relations between the vari-

ous signals. This posterior is computed based on a concurrency feature vector M that contains the

duration of all temporal segments for each visual cue, the order in which the segments are activated

and the number of frames that the apex phases overlap of for every combination of symbols.

Every temporal segment from every symbol generates one feature vector. This vector is defined as:

Fl(i) = {g(i), a(i)} (9.32)

where i is a temporal segment. Again, all features are considered dynamic. Each feature vector Fl(i) is

used as input to the appropriate GentleSVM-Sigmoid classifier. That is, we train a different classifier

for every temporal segment type for every symbol. Thus we train one GentleSVM-Sigmoid for the

onset phase of AU12, one for the apex phase of shoulder actions, etc. A separate classifier is trained

for the concurrency attributes. The vector Fl(i) then provides the ith element of predictions y. After

achieving this, the general approach of late fusion of the individual classifier outputs can be described

as follows.

The time series y represents the whole image sequence and Fl = (Ffl, Fhl, Fsl) represent the over-

all feature vectors consisting of the face Ffl, head Fhl, and shoulder Fsl feature vectors. Under a

Maximum-a-Posteriori (MAP) approach, y must be assigned to one of the two classes (w1, w2), having

maximum posterior probability p(wk|y). Once the posterior probabilities per visual cue, per temporal

segment are obtained by again passing the output of the SVM to a sigmoid function as proposed by

Platt [Platt, 2000], late fusion is applied. The three separate classifiers provide the posterior prob-

abilities p(wk|Fhl), p(wk|Ffl) and p(wk|Fsl) for the head, face and shoulder cues, respectively, to be

combined into a single posterior probability p(wk|y) with one of the fusion methods described in Ta-

ble 9.4. Note that the weights are derived from the classification results on the training data during
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Table 9.4: Description of the three late fusion criteria used: sum, product and weight.

sum k = argmax2
k=1p(wk|Ffl + Fhl + Fsl)

product k = argmax2
k=1p(wk|Ffl × Fhl × Fsl)

weight k = argmax2
k=1σfp(wk|Ff ) +σhp(wk|Fhl) + σsp(wk|Fsl)

Table 9.5: Selected low-abstraction features to distinguish posed from spontaneous smiles.

Relevance Modality Feature definition

1 Face: δ(f3(Tf3, Tf4))

2 Shoulders: f2(Tf2)

3 Face: δ(f4(Tf1, Tf4))

4 Head: f1(Tf3)

5 Face: δ(f2(Tf2))

6 Face: f4(Tf2, Tf4)

7 Shoulders: f2(Tf4)

8 Face: f4(Tf3, Tf4)

9 Shoulders: f1(Tf3)

10 Head: f2(Tf1)

11 Shoulders: f1(Tf1)

12 Head: f3(Tf1, Tf4)

13 Face: δ(f4(Tf1, Tf3))

14 Shoulders: f1(Tf2)

15 Face: δ(f1(Tf4))

cross validation.

9.3.4 Evaluation

We evaluated the three fusion approaches on 100 videos of posed smiles and 102 videos of spontaneous

smiles using 10-fold cross-validation. The videos of posed smiles were taken from the publicly available

part of the MMI database. The videos of spontaneous smiles were taken from three different databases:

8 videos from the Triad database [Kirchner et al., 2006], 3 recordings from the MMI database, and

91 videos from the MMI-database part 2. For this study, we normalised all measurements using the

inter-ocular distance DI . This way we make sure we do not accidentally learn to recognise an entire

database using the average distance of the face to the camera.

All videos were recorded from a near-frontal view, under controlled lighting conditions. The recording

of the MMI-database is described in section 3.4. The Triad database was obtained to study the effect of

alcohol on the social behaviour of men. Three men sitting around a table were recorded while talking

freely to each other and consuming alcohol. All videos were edited to ensure that they contained
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exactly one smile. Multiple apices were allowed; the video was only cut when the face had returned

to its neutral phase.

The recognition rate of AU detection is important because it influences the calculation of the high-

level features used in mid-level fusion and late fusion. If an AU is not correctly detected, temporal

segmentation will be flawed and hence the values of the high-level features will be flawed as well. We

measured AU recognition rates separately for the spontaneous and the posed expressions. On the

spontaneous data, AU6 was recognised correctly with 77% of the times, AU12 with 54% and AU13

with 85%. On the posed data AU6 was recognised correctly 76% of the times, AU12 40% of the times

and AU13 76% of the times. The reason why AU12 has a rather low classification rate is that AU12

and AU13 are very similar. Both involve movement of the outer mouth corners. The difference lies

in the horizontal movement: with AU12 the mouth corners move further out while with AU13 the

mouth corners are pulled up sharply.

Table 9.6 shows the classification results for all fusion strategies. All results were obtained using 10-fold

cross-validation. For the purpose of computing the precision and recall, we considered spontaneous

smiles to be the positive class. Overall we can say that the proposed system works as desired, being

able to discern between posed and spontaneous smiles with fairly high accuracy. There is no signif-

icant difference between early and mid-level fusion at a 5% significance level. Late fusion does score

significantly higher than early fusion and mid-level fusion. The results also show that even though

some AUs were not recognised perfectly, the influence of the low AU detection rates on distinguishing

posed from spontaneous smiles is hardly measurable. As the AU detection only has influence on the

mid-level and late fusion strategies, we could expect an even higher score for these approaches if the

AU recognition would improve.

The high results for late fusion could be explained by two factors. First there is the high classification

abstraction. Specialised classifiers are learnt to distinguish posed from spontaneous smiles for each

segment of a smile, i.e., during the onset of head motion, the apex of a smile, etc. Because all

specialised classifiers return a posterior probability, the fusion rule can then be used to generalise from

the results per segment of an action to the entire action (i.e. a smiling face with its accompanying

bodily action). Of course this setup is unable to learn which bodily actions typically co-occur with

certain facial actions.

The second explanation for the high score for late fusion is the high data abstraction. The low-

abstraction features only describe simple attributes: positions, distances and angles of points. More-

over, they only describe those attributes at one point in time — the frame for which they are defined.

The high-abstraction features capture more general physical phenomena such as the duration of a
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Fusion strategy Cl. rate Recall Precision F1-measure

Early 0.886 0.889 0.880 0.885

Mid-level 0.881 0.883 0.886 0.885

Late (sum) 0.931 0.956 0.920 0.937

Late (product) 0.940 0.964 0.933 0.948

Late (weight) 0.931 0.943 0.927 0.935

Table 9.6: Classification, recall, precision rates and F1-measure for the different fusion strategies
employed. Performance measures are computed per video.

temporal segment, the average speed during onset and the order in which actions occur. One could

argue that if the higher data abstraction would benefit the classification procedure, we should also

have obtained better results for mid-level fusion than presented in this study. However, for mid-level

fusion to work, the original temporal phase pattern, with possibly multiple apices, had to be cast

into a strict neutral-onset-apex-offset-neutral phase transition sequence (see section 9.3.3). Because of

these classification procedure constraints, the temporal segmentation of the face and body actions was

severely altered. We think that this might have cancelled out all the benefits of the high-abstraction

features.

To the best of our knowledge, the system presented here is the first to propose discerning posed

from spontaneous smiles by fusing video data from face, head and body actions. Therefore we cannot

compare our results with other works. Yet, to give an indication of how difficult the problem is, Hess et

al. [Hess et al., 1989] achieved an 82% classification rate on a set of 80 smiles using electromyography

(EMG).

To investigate what the relative importance of each visual cue was, we investigated the properties of

the early fusion strategy. We performed seven tests (again using 10-fold cross-validation), each time

using a different combination of visual cues. So in the first three tests we use features from early fusion

that belong to only one of the three cues and in the next three tests we use a combination of two visual

cues and the last test used all three cues. The results of this test are shown in Table 9.7. For enhanced

resolution, the results listed are on a per-frame basis, instead of per-video (so the classification rate

indicates the fraction of correctly classified frames). In addition, Table 9.8 provides a matrix showing

which of the results were statistically different on a 5% significance level.

When we only take single visual cues into account (combinations I, II and III), the head cue performs

best according to our results. However, the recognition rates between the separate visual cues are not

significantly different at a 5% significance level (P = 0.05). Early fusion of all visual cues (combination

VII) is significantly better then any of the single-cue combinations. Table 9.7 also shows that a

combination of two visual cues already outperforms the tests with only one cue.



9.3. Posed vs. spontaneous smiles: multi-cue automatic detection 165

Visual Cues Cl. rate Recall Precision F1-measure

I Face 0.812 0.841 0.868 0.854

II Head 0.822 0.823 0.916 0.867

III Shoulders 0.794 0.793 0.915 0.850

IV Face-Head 0.867 0.897 0.893 0.895

V Face-Shoulders 0.871 0.896 0.899 0.898

VI Head-Shoulders 0.845 0.861 0.899 0.880

VII All 0.895 0.919 0.916 0.918

Table 9.7: Comparison of performance measures for the different visual cues separately and fused.
Performance measures are computed per frame.

I II III IV V VI VII

I 0 0 0 0 1 0 1
II 0 0 0 0 1 0 1
III 0 0 0 1 1 1 1
IV 0 0 1 0 0 0 0
V 1 1 1 0 0 0 0
VI 0 0 1 0 0 0 1
VII 1 1 1 0 0 1 0

Table 9.8: Matrix of statistical significant different classification rates. Roman indices relate to the
visual cue combinations listed in table 9.7. A 1 indicates statistically significantly different results.

To further investigate the relevance of the different visual cues, we performed an analysis of the features

selected by GentleBoost. For early fusion, 62% of the selected features originated from the face cue,

16% from the head cue, and 22% origined from the shoulder cue. For mid-level fusion, 40% of the

features came from the face cue, 40% from the head cue, 13.3% from the shoulder cue and 6.7% of the

selected features origined from the concurrency features (which span all visual cues). For early fusion

GentleBoost selected 45 low-abstraction features, of which the first 15 are listed in Table 9.5. All 15

selected features for mid-level fusion are listed in Table 9.10.

In late fusion, feature selection takes place in the separate classifiers specialised for each temporal phase

of each visual cue so a comparison of the selected features is not feasible. However, we might learn

something from the classification performance of the specialised classifiers for each symbol. Table 9.9

shows the classification results attained when we use only one specialised classifier to classify an entire

video into a posed or a spontaneous smile. From this table, we can read two things: first, the head cue

seems to be most reliable in late fusion. Second, the offset phase seems to carry the least information.

Based on the results for feature selection and the results of combinations of visual cues, given our data,

we might conclude that the head is the most important visual cue for distinguishing between posed

and spontaneous smiles. This is in agreement with both other HCI works [Gunes and Piccardi, 2007,

Kapoor and Picard, 2005] and cognitive scientists’ works [Buller et al., 1994, Ekman and Friesen, 1969].
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Onset Apex Offset

Face 0.719 0.612 0.451
Head 0.781 0.826 0.742

Shoulders 0.752 0.766 0.638

Concurrency 0.781

Table 9.9: Classification rates for the specialised classifiers used in late fusion. There is no temporal
phase associated with the concurrency classifier.

But more importantly, the results show that the visual cues complement each other. The result of all

cues combined (the fused result, same as the early-fusion result of table 9.6) is significantly better at

P = 0.05 than any of the other visual cues separately. This confirms our hypothesis that a multi-cue

approach benefits posed vs. spontaneous smile detection.

To answer our question regarding the relevance of temporal dynamics for automatic multi-cue posed vs.

spontaneous smile recognition, we again provide an analysis of the feature selection process. Table 9.5

shows all the selected features for low-abstraction features and Table 9.10 those for high-abstraction

features, including the visual cue that the feature originated from. In the case of high-abstraction

features, the originating temporal segment is listed as well. For early fusion, 24.4% of the selected

features were static features, while 75.6% of the features were dynamic features.

While the fraction of static features was greater than we expected, we can still clearly see that the

temporal dynamics are the most important features for automatic multi-cue posed vs. spontaneous

smile recognition. This is also reflected in the high classification results of late fusion, which uses only

temporal dynamics. A closer look at Table 9.10 reveals that the speed with which the head rotates

is of paramount importance, as is the head’s translation and the sequence in which the temporal

segments are ordered. Fig. 9.3 shows a scatter plot of the mean velocity of the right mouth corner in

x-direction during onset and offset. As we can see, spontaneous smiles have both a slower onset and

a slower offset, consistent with the cognitive sciences’ findings [Cohn and Schmidt, 2004].

Ekman predicted that the asymmetry of facial actions is an indicator for distinguishing posed from

spontaneous expressions [Ekman, 2003]. We did not find any evidence for this however, only one of

the selected high-level features was an asymmetry feature. Although this observation is in disagree-

ment with Ekman’s findings, the same lack of correlation between asymmetry and the nature of the

expression was previously reported by Schmidt et al. [Schmidt et al., 2006].

The results show that the proposed multi-cue approach to automatic distinction between posed and

spontaneous smiles is extremely accurate. From the results presented, it is clear that fusing video

data from the face, head and shoulders increases the accuracy compared to a monomodal/mono-cue
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Figure 9.3: Mean velocity of the right mouth corner in x-direction during onset (x-axis) vs. mean
velocity of the right mouth corner in x-direction during offset (y-axis). Crosses denote spontaneous
smiles.

Rel. Cue./seg. Feature

1 onset head: mean angular velocity
2 concurrency: order apex shoulders
3 apex head: max translational displ.
4 apex head: mean angular velocity
5 apex shoulders: max angular velocity of left shoulder
6 apex AU6: Asymmetry in x-direction
7 apex head: max angular displ.
8 offset AU12: mean velocity of point 2 in x direction
9 offset AU13: mean displ. of point 4 in x direction
10 onset shoulders: max displ. of right shoulder y direction
11 offset head: mean angular velocity
12 onset AU13: mean velocity of point 3 in x direction
13 apex AU13: mean displ. of point 4 in x direction
14 onset head: max angular velocity
15 apex AU12: max displ. of point 2 in x direction

Table 9.10: Selected high-abstraction features to distinguish posed from spontaneous smiles.
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system that employs only one of the listed visual cues. This is in agreement with the body of work

in cognitive sciences indicating that humans leak their intentions not only through facial expressions,

but also through their body language. It is hard to say which visual cue is the most important. For

the data analysed, results seem to indicate that the head motion is the most reliable source, followed

closely by the face. However, more experiments are needed to confirm this. When evaluating the

importance of the expression dynamics for classification purposes, the dynamic attributes are clearly

more important than static ones. This can be seen from the large number of dynamic features selected

during early fusion, as well as from the high results for late fusion (which uses only dynamic features).

Regarding the different fusion strategies, late fusion clearly performs best. The first reason for this

is that with late fusion we are able to decompose the problem in smaller subproblems, for which we

can train specialised classifiers. Another major benefit of late fusion is the use of high-abstraction

features, which encode important temporal dynamic attributes of human nonverbal behaviour.



Chapter 10

Conclusion

In this thesis we have investigated the morphologic and temporal dynamic aspects of automatic facial

expression recognition from a geometric feature point of view. We applied state-of-the-art face detec-

tion, facial point detection and facial point tracking techniques to attain a set of tracked points for a

video displaying a facial expression. Based on these tracked points we proposed a geometric feature

representation of facial actions, that was shown to encode both information about the morphology of

facial actions as well as of their temporal dynamics. A combination of GentleBoost feature selection

and SVM classification was used fro AU activation detection. For the recognition of the temporal

phases of AUs, a hybrid SVM-HMM was proposed, preceded by GentleBoost feature selection. We

have shown that these approaches can indeed be very successful for AU analysis, particularly for the

analysis of AU temporal dynamics.

This thesis is the first work to address the automatic recognition of the AU temporal phases onset, apex

and offset. Not only have we proposed a method that results in high classification accuracy and timing

precision for the recognition of these temporal phases, we have also shown that a successful analysis

of AU temporal dynamics can help in attaining higher AU event detection results. Moreover, we

have shown that we can use the information about the timing aspects of the automatically recognised

temporal phases to distinguish between some aspects of human facial behaviour.

169
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10.1 Summary of Thesis Achievements

10.1.1 Feature definitions

This thesis provides more insight in the applicability of geometric features for facial expression analysis

than was previously available. We have investigated a number of ways to extract as much information

from the facial point tracking data as possible. Three sets of geometric features were defined in

chapter 5, each with a different temporal scope. The first set, FS , uses only the information available

at one moment in time, i.e. only the position of points and distances and angles between points in

the current frame. Of course it was to be expected that this feature set would not do well to describe

temporal patterns in a facial action. Yet somewhat surprisingly, we have shown that this information

is not only insufficient for the analysis of the face’s temporal dynamics, but also the worst set of

features to describe the morphology of a facial action, which could be considered to be a static facial

expression recognition problem.

The best set of features was FD, which computes its features comparing facial point tracking infor-

mation between two moments in time. The features are defined using the current frame values and

either the previous frame (to compute velocities of points) or the first frame in a sequence (to com-

pute deviations with respect to a neutral expression). Strictly speaking, we don’t necessarily have to

compare with the first frame of a sequence. We could compare with any frame about which we know

that the face is neutral in that image. This set achieved the highest classification accuracy, both on

its own and in combination with other feature sets.

Somewhat puzzling are the results for the third feature set, FW . This set was designed to capture more

complex local temporal dynamics by describing the evolution of the other features by a polynomial

function fitted to the feature values in a fixed time-window. As expected, the added value of this

feature set was greatest for detecting the onset and offset of AUs (see table 7.4). However, the set FD

on its own was better at this than FW alone. Combining FD and FW improved performance somewhat,

but the full potential was only achieved when FW was combined with both FD and FS . Because of our

strict evaluation procedures we are confident that this is not due to overfitting, as might be suggested

since the union of all three sets has a greater dimensionality. Yet we cannot fully explain why the

descriptive power of the local time parameterised features FW only come to their right in combination

with both the static features and the two-frame based features.

Another important lesson learned from the analysis of the different feature sets is that when we choose

to use geometric features, analysis of video will always outperform the analysis of static images. By
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definition the only feature set applicable to static images is FS and we have shown that this results

in the worst performance. This holds both for the analysis of the morphological as well as for the

temporal dynamic aspects of facial expressions.

10.1.2 Fully automatic AU analysis

The facial expression analysis system capable of recognising both AUs and emotions, is fully auto-

matic. We are not the first to present a fully automated system. There exists at least one fully

automated system that uses appearance based techniques, developed by Dr. Marian Bartlett’s group

at UCSD, and one that uses geometric features, developed by the robotics laboratory at Carnegie

Mellon University. The latter only works for subjects that the system has been trained on. To the

best of our knowledge we have presented in this thesis the first fully automatic geometric feature based

AU analysis system that is capable of dealing with subjects unknown to the system. We believe that

this is an important achievement.

We have integrated our fully automatic facial expression analysis system (including emotion recog-

nition), with an artificial portrait painting program called the Painting Fool. With this successful

combination of two machine learning/Artificial Intelligence programs we have entered and won the

2007 Machine Intelligence Competition. This, in turn, has resulted in media attention from many

online magazines, a British daily newspaper and two BBC radio programs.

One important aspect of having a fully automatic system is that it allows researchers to take their

system out of the lab and into the real world. We have done so with our system for the Machine

Intelligence Award and related interviews, and have identified in a short period of time a number of

issues that need to be addressed which did not seem a problem with our recordings made under lab

conditions. Rigid out-of-plane head motion, tracker noise and facial point detection under difficult

lighting conditions (particularly shading from overhead-lighting, a common indoors situation) are all

things that have to be worked on (see section 10.2 below). On the other hand, other aspects of the

system turned out to be extremely robust. For instance, the point tracker was very robust to adverse

lighting conditions and the facial point detector performed very well even for people with glasses,

beards, or moustaches and still worked fine with about 15 degrees head rotation in any direction.

10.1.3 Temporal dynamics analysis

We have proposed to use a hybrid SVM-HMM classifier with geometric features selected by Gentle-

Boost for the problem of recognising the temporal phases of AUs. We have shown that this method
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performs very well. In terms of classification accuracy, the method achieves an average F1-measure

of 53.7% for the onset phase, 65.6% for the apex phase and 45.9% for the offset phase. In terms of

timing, when the system correctly identifies an AU to be present, it predicts the start of each temporal

phase with an error of less than 2 frames on average (1/12-th of a second) and the average temporal

phase duration error is less than 4 frames (1/6-th of a second). In terms of F1-measure classification

accuracy, it outperforms an implementation with a multiclass gentleSvm by 3% for the onset phase,

7.3% for the apex phase and by 6.6% for the offset phase.

The ability to exactly recognise when a facial action starts, when it reaches the start and end of its

peak and when it has returned to neutral opens up a world of possibilities. It allows us to take the

analysis of facial expressions to the next level. Durations and differences in timing can now be studied

with high precision. We believe that with this method we have paved the way for many real-world

applications. The Emotionally Aware Painting Fool, distinguishing posed from spontaneous brow

actions and distinguishing posed from spontaneous smiles are but the first examples of this.

Originally, we determined whether an AU was active during an entire video by analysing the output

of the AU-activation detection (event detection, see chapter 6). However, we realised that it might be

useful to scrutinise the videos in which an AU was predicted to be active by the AU temporal analysis

algorithm. Because the SVM-HMM checks whether an AU follows a correct temporal pattern, it can

exclude a large number of videos in which an AU was falsely predicted as positive, thereby increasing

the precision of our event detection. The danger of course would be that some true positives would

incorrectly be dismissed by the temporal analysis algorithm. This fear turned out to be ungrounded,

as we achieved a staggering 25.1% precision increase for the event detection, with only a 1.6% decrease

in recall. This translates to a F1-measure increase of 17.1%.

10.1.4 Emotive expression recognition

In this thesis we have shown two important facts. Firstly we have shown that it is straightforward to

recognise typical displays of emotions using geometric features. Secondly, that a two-step approach

in which we first detect AUs and decide based on the AUs which emotion was shown is very well

possible too. While there is a significant loss in performance if we employ the two-step approach with

automatically detected AUs as input, we have also shown that recognition rates are nearly perfect if

the AU detection would be perfect. The added benefits of knowing not only what emotive expression

was shown, but also what facial muscles were used to produce this prototypic expression, and what

the temporal dynamics of theses AUs were make a two-step approach very attractive.
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Another very important benefit of the two-step approach is that we can decouple the purely objective

facial muscle analysis from the more subjective facial expression analysis. An AU detector can be

trained without any knowledge about the intention of the person who made the facial expression.

Conversely, an expression analyser, e.g. an emotive expression recognition system, can be trained using

AU activation information only. Since AU activation data is very sparse (32 dimensional), creating a

huge database of facial expressions is not constricted by disk space anymore. Training systems that

can recognise a novel expression or retraining systems when definitions of expressions have changed

becomes an easy task. This would allow researchers who are more interested in computer vision

and pattern recognition to focus solely on the purely technical problem of AU analysis while other

researchers with more interest in human behaviour to focus on the meaning of the shown expressions.

10.1.5 MMI-Facial Expression Database

As part of the work for this thesis, we have created the largest publicly available dataset of FACS-

coded videos and static images of facial expressions. The database contains over 3000 videos and

high-resolution static images. It is the first to contain recordings of both posed and spontaneous facial

expressions, dual-view recordings of facial expressions (frontal and profile), and a very large amount

of single-AU activations.

The database already has hundreds of users around the world, with new applications for access to the

database reaching us on a daily basis. Our intention is to expand this database so that it can be used

to benchmark various facial expression recognition proposals. We intend to create a benchmarking

protocol based on this database, with various options to test separate issues such as occlusions, head

rotation or lighting effects. A part of the data would be held unavailable to the database users to

allow us to organise an AU recognition competition.

10.1.6 Distinguishing posed from spontaneous facial actions

One of the important applications of the automatic AU analysis system proposed in this thesis is

to be able to automatically infer what the meaning of a facial expression was. We have shown in

chapter 9 that it is indeed possible to use our proposed methods to gain an increased understanding

of human (facial) behaviour. In two separate studies, we have used the information about the timing

of the temporal phases of AUs to compute a number of high-level features such as the duration of the

temporal phases, the velocity with which a facial point moved on average during the onset phase or

the number of peaks present in a facial action. In both studies, we have shown that with this type of
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information it is possible to distinguish between two different classes of facial behaviour; posed and

spontaneous facial actions.

In the first study, we solely used information from the face to distinguish between deliberate (posed)

and involuntary (spontaneous) brow actions. This resulted for a dataset of 114 deliberate and 70

spontaneous brow actions in a F1-measure of 87.3%. The second study fused three visual cues to

distinguish between deliberate and spontaneous smiles. Fusing the visual cues turned out to greatly

improve results, compared to using a single visual cue. A 5.1% increase in F1-measure was obtained

when using early fusion. Information from facial point motion, head motion and shoulder motion

was combined in a number of different fusion strategies. The best performing fusion strategy for this

problem turned out to be late fusion. In this strategy a separate classifier is learned for each visual

cue, and a fusion rule aggregates the three classifier results into a single posterior probability. With

this approach, a 94.8% F1-measure was achieved.

While the results for both studies are extremely good, we have to keep in mind that the data for the

posed and spontaneous classes were recorded for different purposes, under different conditions. While

we have tried everything possible to remove database-specific features such as the framerate or the

distance of the face to the camera, some caution about the impact of the results is necessary. Still,

we believe that it is possible with our proposed system to distinguish between various types of facial

behaviour. Future work will require us to test our proposed methods on data that was specifically

recorded to evaluate our human behaviour analysis system.

10.2 Future Work

While we have made a number of improvements to the current state of the art in the field of automatic

facial expression recognition with the work presented in this thesis, a number of problems remain

unsolved and need to be addressed in future work. We are aware that the current version of our system

cannot cope with occlusions of (parts of) the face: neither on the level of facial point detection, facial

point tracking or the inference of AU morphology/temporal dynamics. This issue has to be addressed

on all levels if a system that aims to function under real-world conditions is to be achieved.

Similarly, the current system is not capable of detecting AUs and their temporal dynamics with high

accuracy when out-of-image-plane head rotation occurs. To be able to correct for this type of head-

pose, we cannot work with the assumption that all facial points lie on a plane anymore. We either

need to use a form of 3-dimensional model to accurately detect the head pose and register the facial

point tracking data back to a frontal-view representation, or we could divide the head-pose space into a
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number of sub-spaces in which the planarity assumption holds locally and train a different AU analysis

system for each of the subspaces. Another problem caused by large head rotation is directly linked to

the problem of (self) occlusion: when the head is rotated too much with respect to the camera, some

facial points simply disappear out of view as they get occluded by other facial features (e.g. the inner

eyepoints which get occluded by the nose)1.

Currently our system assumes that the face initially displays a neutral expression. Of course, in reality

we do not know what expression is shown when a user is introduced to the system. Depending on

the application, this may or may not be a problem. The two system elements that would need to

be changed to be able to deal with non-neutral initial expressions are the facial point detector and

the AU analysis system. While we think it will not be too hard to adapt the facial point detector

to cope with this issue, it is quite well possible that the facial analysis system will need to analyse a

large number of frames before it can be certain about what AUs are activated, and when a neutral

expression has began.

Apart from being able to deal with more real-life situations, described above, there are two avenues

of future research that we would like to pursue. First of all, we would like to create a system that

fuses geometric with appearance based techniques. The two approaches seem to complement each

other, and the idea would be that together they can overcome each other’s weaknesses (e.g., geometric

feature-based approaches are more robust to registration errors while appearance based techniques

seem to be more accurate at detecting minute changes in facial actions). The fundamental question

for such a hybrid approach would be how to fuse the information from both approaches. If we would

fuse at too low a level, the individual strengths of the two approaches might get lost. But if we fuse

at too high a level, the two approaches cannot use the information contained in the other channel for

their own analysis. Thus, the level of fusion would need to be studied.

The second avenue of future research that we would like to pursue is the recognition of AU intensity.

This is an area of research in which to date very little has been done. Yet explicit knowledge about

the intensity of facial actions would be of great value to human facial behaviour analysis.

1Incidentally, this is exactly a proof of the non-planar characteristic of the face. If all facial points would lie on a
plane, they would all remain visible until the normal of the plane is perpendicular to the viewing angle of the camera,
at which point all facial points on the plane would disappear out of view together
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