COMP2012/G52LAC
Languages and Computation
Lecture 1
Administrative Details and Introduction
Venanzio Capretta and Henrik Nilsson
University of Nottingham

Organization (1)

- Lectures:

- Two 1 h lectures per week (back to back).
- Detailed but provisional schedule available on the module web page.

- Coursework:

- 3 problem sets.
- Made available via the module web page.
- Best 2 counts.
- Deadlines: 27/2, 20/3, 10/4.
- Released a week prior to submission deadline.

Literature (2)

- Supplementary material; e.g., slides, sample program code.
(Available via the module web page.)
- Your own notes from the lectures!
- The lecture schedule contains detailed lecture-by-lecture references to the literature.

Finding People and Information

- Venanzio Capretta

Room C05

- Henrik Nilsson

Room A08

- Moodle
- Main module web page:
www.cs.nott.ac.uk/~nhn/COMP2012
- Moodle forum!

Organization (2)

- Assessment:

- Coursework, 25 \%
- 2 hour written examination, 75%
- However, resits are by 100% written examination (standard School policy)

Aims of the Course

- To familiarize you with key Computer Science concepts in central areas:
- Automata Theory
- Formal Languages
- Models of Computation
- Complexity Theory
- To equip you with tools with wide applicability in the fields of CS and IT.
Draws from: COMP1001/G51MCS
Feeds into: COMP3012/G53CMP, COMP3001/G53COM, COMP4001/G54FOP

Literature (1)

- Main reference: John E. Hopcroft, Rajeev Motwani, \& Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation, 3rd edition, Pearson, 2007.
- Alternative/complement: Linz. An Introduction to Formal Languages and Automata, 6th edition, Jones \& Bartlett Publishers, 2017.
- The lecture notes by Altenkirch, Capretta, Nilsson (January 2019).
Available via the module web page.

The Lecture Notes

- Comprehensive, typeset lecture notes. (At present around 160 pages.)
- Carefully aligned with the lectures.
- Covers everything said in the lectures (and more).
- Exercises with detailed model solutions (in response to student feedback).
- The exercises are quite similar to typical coursework problems.

You are strongly encourage to take your own notes as well during lectures because:

- Lectures may provide an alternative perspective, use different examples, etc.
- Research shows that note taking significantly aids learning.
Taking relevant notes is a lot easier if you familiarise yourself with the relevant parts of the typeset lecture notes prior to each lecture!

Example: Languages and Grammars (1)

Consider the following Java fragment:

```
class Foo {
        int n;
        void printNSqrd() {
            System.out.println(n * n);
        }
    }
```

- Fundamentally a string of characters.
- But lots of structure to valid Java code, e.g.:
- Keywords, identifiers, operators
- Nesting; e.g. method inside class

Noam Chomsky (2)

- The notion of a formal language
- Description of different classes of languages:
- Regular expressions
- Grammars
- Recognition of different classes of languages:
- Finite Automata
- Push Down Automata
- Applications: Scanning and Parsing

Example: Languages and Grammars (2)

- How to describe the set of strings that are valid Java?
- Given a string, how to determine if it is a valid Java program or not?
- How to recover the structure of a Java program from a "flat" string?
We will study:
- Regular expressions and grammars: precise descriptions of languages.
- Various kinds of automata: decide if a string belongs to a language or not.

The Chomsky Hierarchy

Leading to:

- General notions of computation:
- Turing machines
- Lambda calculus
- Fundamental questions such as
- What can be computed at all?
- What can be computed efficiently?

Noam Chomsky (1)

Noam Chomsky (1928-):

- American linguist who introduced Context Free Grammars in an attempt to describe natural languages formally.
- Also introduced the Chomsky Hierarchy which classifies grammars and languages and their descriptive power.

Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of $\mathrm{n} \geq 1$?

```
while (n > 1) {
    if even(n)
        n = n / 2;
    } else {
        n = n * 3 + 1;
    }
}
```


Example: The Halting Problem (2)

Not as easy to answer as it might first seem.
Say we start with $\mathrm{n}=7$, for example:

$$
7,22,11,34,17,52,26,13,40,20,10,5
$$

$$
16,8,4,2,1
$$

The sequence involved is known as the hailstone sequence and Collatz conjecture says that the number 1 will always be reached.
In fact, for all numbers that have been tried (up to 2^{60}), it does terminate...
... but so far, no proof! (See e.g. Wikipedia.)

Alan Turing (2)

Alonzo Church (2)

Example: The Halting Problem (3)

The following important decidability result should then perhaps not come as a total surprise:

It is impossible to write a program that decides if another, arbitrary, program terminates (halts) or not.

This was first proved by the British mathematician Alan Turing using Turing Machines.

Example: the λ-Calculus

- λ-calculus is a theory of pure functions:

$$
(\lambda x . x)(\lambda y \cdot y)
$$

- Functional programming languages like Haskell implements the λ-calculus.
- Both the Turing machine and the λ-calculus are universal models of computation: equivalent in capabilities.

Example: P versus NP (1)

"Can every problem whose solution can be checked quickly by a computer also be solved quickly by a computer?"

- Likely the most famous open problem in computer science, dating back to the 1950s.
- "Quickly" here means in time proportional to a polynomial in the size of the problem.
- There is an abundance of important problems where solutions can be checked quickly, but where the best known algorithm for finding a solution is exponential in the size of the problem.

Alan Turing (1)

Alan Turing (1912-1954):

- Introduced an abstract model of computation, Turing Machines (1936), to give a precice definition of what problems are "effectively calculable" (can be solved mechanically).
- Instrumental in the success of British code breaking efforts during WWII.
- PhD student of Alonzo Church

Alonzo Church (1)

Alonzo Church (1903-1995):

- Alan Turing's PhD advisor
- Introduced the λ-calculus (1936) to give a precise definition of what problems are "effectively calculable".
- Church-Turing thesis: What is "effectively calculable" is exactly what can be computed by a Turing machine.

Example: P versus NP (2)

Subset sum problem: Does some non-empty subset of given set of integers sum to zero? E.g. given $\{3,-2,8,-5,4,9\}$, the non-empty subset $\{-5,-2,3,4\}$ sums to 0 .

- Easy to check proposed solution: just add all numbers. (How long would it take for set of size n ?)
- But for finding a solution, no better way known than essentially trying each possible subset in turn. (How long would it take for set of size n ? How many subsets are there?)

Introduction to Languages

The terms language and word are used in a strict technical sense in this course:

- A language is a (possibly infinite) set of words.
- A word is a finite sequence (or string) of symbols.
ϵ denotes the empty word, the sequence of zero symbols.

The term string is often used interchangeably with the term word.

All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ^{*} as set of words (or sequences) over Σ :

- The empty word $\epsilon \in \Sigma^{*}$.
- given a symbol $x \in \Sigma$ and a word $w \in \Sigma^{*}$, $x w \in \Sigma^{*}$.
- These are all elements in Σ^{*}.

This is called an inductive definition.
Is Σ^{*} always non-empty? Always infinite?

Examples of Languages (2)

- The set of palindromes (words that read the same forwards and backwards, like abba) is a language for any alphabet.
- The set of correct Java programs. This is a language over the set of UNICODE characters.
- The set of programs that, if executed successfully on a Windows machine, prints the text "Hello World!" in a window. This is a language over $\Sigma=\{0,1\}$.

Symbols and Alphabets

Languages: Examples

What is a symbol, then?
Anything, but it has to come from an alphabet Σ which is a finite set.

A common (and important) instance is $\Sigma=\{0,1\}$.
ϵ, the empty word, is never a symbol of an alphabet.

All Words over an Alphabet (2)

Example: Given $\Sigma=\{0,1\}$, some elements of Σ^{*} are

- ϵ (the empty word)
- 0,1
- 00, 10, 01, 11
- 000, 100, 010, 110, 001, 101, 011, 111
- ...

We are just applying the inductive definition.
Note: although there are infinitely many words in Σ^{*} (when $\Sigma \neq \emptyset$), each word has a finite length!

Language Membership

Fundamental question for a language $L: w \in L$?

- L finite: Easy! (Enumerate L and check)
- L infinite: ?

We need:

- A finite (and preferably concise) formal description of L.
- An algorithmic method to decide if $w \in L$ given a suitable description.
Various approaches to achieve this will be key a theme throughout the module.

alphabet	$\Sigma=\{a, b\}$
words	$? \epsilon, a, b, a a, a b, b a, b b$,
	$a a a, a a b, a b a, a b b, b a a, b a b, \ldots$
languages	$? \emptyset,\{\epsilon\},\{a\},\{b\},\{a, a a\}$,
	$\{\epsilon, a, a a, a a a\}$,
	$\left\{a^{n} \mid n \geq 0\right\}$,
	$\left\{a^{n} b^{n} \mid n \geq 0, n\right.$ even $\}$

Note the distinction between ϵ, \emptyset, and $\{\epsilon\}$!

Examples of Languages (1)

Some examples of languages:

- The set $\{0010,00000000, \epsilon\}$ is a language over $\Sigma=\{0,1\}$.
This is an example of a finite language.
- The set of words with odd length over $\Sigma=\{1\}$. (Finite or infinite?)
- The set of words that contain the same number of 0 s and 1 s is a language over $\Sigma=\{0,1\}$. (Finite or infinite?)
\qquad

