COMP2012/G32LAC

Languages and Computation
Lecture 1
Administrative Details and Introduction

Venanzio Capretta and Henrik Nilsson

University of Nottingham

° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.1/35

Finding People and Information

Venanzio Capretta
Room C05

Henrik Nilsson
Room AQ08

Moodle

Main module web page:
Www.cCcs.nott.ac.uk/~nhn/COMP2012

Moodle forum!

COMP2012/G52LACLanguages and ComputationLecture 1 2/35

Aims of the Course

° ° ° ° ° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.3/35

Aims of the Course

To familiarize you with key Computer Science
concepfts in central areas:

Automata Theory
Formal Languages
Models of Computation
Complexity Theory

COMP2012/G52LACLanguages and ComputationLecture 1 3/35

Aims of the Course

To familiarize you with key Computer Science
concepfts in central areas:

Automata Theory
Formal Languages
Models of Computation
Complexity Theory

To equip you with tools with wide applicability
in the fields of CS and IT.

COMP2012/G52LACLanguages and ComputationLecture 1 3/35

Aims of the Course

To familiarize you with key Computer Science
concepts in central areas:

Automata Theory
Formal Languages
Models of Computation
Complexity Theory

To equip you with tools with wide applicability
in the fields of CS and IT.

Draws from: COMP1001/G51MCS
Feeds into; COMP3012/G53CMP,
COMP3001/G53COM, COMP4001/G54FOP

Organization (1)

Lectures:
Two 1 h lectures per week (back to back).

Detailed but provisional schedule available
on the module web page.

COMP2012/G52LACLanguages and ComputationLecture 1 4/35

Organization (1)

Lectures:

Two 1 h lectures per week (back to back).

Detailed but provisional schedule available
on the module web page.

Coursework:
3 problem sets.

Made available via the module web page.
Best 2 counts.

Deadlines: 27/2, 20/3, 10/4.
Released a week prior to submission deadline.

Organization (2)

Assessment:
Coursework, 25 %
2 hour written examination, 75 %

)))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.5/35

Organization (2)

Assessment:
Coursework, 25 %
2 hour written examination, 75 %

However, resits are by 100 % written
examination (standard School policy)

COMP2012/G52LACLanguages and ComputationLecture 1 5/35

Literature (1)

Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.

Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.

COMP2012/G52LACLanguages and ComputationLecture 1 6/35

Literature (1)

Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.

Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.

Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 6th
edition, Jones & Bartlett Publishers, 2017.

COMP2012/G52LACLanguages and ComputationLecture 1 6/35

Literature (1)

Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.

Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.

Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 6th
edition, Jones & Bartlett Publishers, 2017.

The lecture notes by Altenkirch, Capretta,
Nilsson (January 2019).
Avalilable via the module web page.

Literature (2)

Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.7/35

Literature (2)

Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

Your own notes from the lectures!

))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.7/35

Literature (2)

Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

Your own notes from the lectures!

The lecture schedule contains detailed
lecture-by-lecture references to the literature.

COMP2012/G52LACLanguages and ComputationLecture 1 7/35

Literature (3)

Introduction to
Automata Theory,
Languages,
' and Computation

“«7 . Jobn B Hoperoft Rajeey Motwani

Jefirey I Ullman

LT - £ >
__,f g %&WFA‘EL‘T‘“I}H _."}'
" g 4 r: ,f"_ ¥ ":f" N l_.

" -:": f"'J .\

¥ -\f "':_.F o .

.I # L / -
£ i Jf‘- h b
i

L}
i

AN INTRODUCTION TO

FORMAL
LANGUAGES ano
AUTOMATA

K
~ - PETERLINZ
E\H. ;

A mN P
L% = W '-_' .f"'jh::r‘ﬂ . %

COMP2012/G52LACLanguages and ComputationLecture 1 — p.8/35

The Lecture Notes

° ° ° ° ° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.9/35

The Lecture Notes

Comprehensive, typeset lecture notes.
(At present around 160 pages.)

COMP2012/G52LACLanguages and ComputationLecture 1 9/35

The Lecture Notes

Comprehensive, typeset lecture notes.
(At present around 160 pages.)

Carefully aligned with the lectures.

COMP2012/G52LACLanguages and ComputationLecture 1 9/35

The Lecture Notes

Comprehensive, typeset lecture notes.
(At present around 160 pages.)

Carefully aligned with the lectures.

Covers everything said in the lectures (and
more).

COMP2012/G52LACLanguages and ComputationLecture 1 9/35

The Lecture Notes

Comprehensive, typeset lecture notes.
(At present around 160 pages.)

Carefully aligned with the lectures.

Covers everything said in the lectures (and
more).

Exercises with detailed model solutions (in
response to student feedback).

COMP2012/G52LACLanguages and ComputationLecture 1 9/35

The Lecture Notes

Comprehensive, typeset lecture notes.
(At present around 160 pages.)

Carefully aligned with the lectures.

Covers everything said in the lectures (and
more).

Exercises with detailed model solutions (in
response to student feedback).

The exercises are quite similar to typical
coursework problems.

COMP2012/G52LACLanguages and ComputationLecture 1 9/35

Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

))))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.10/35

Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

Lectures may provide an alternative
perspective, use different examples, etc.

))))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.10/35

Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

Lectures may provide an alternative
perspective, use different examples, etc.

Research shows that note taking significantly
aids learning.

))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.10/35

Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

Lectures may provide an alternative
perspective, use different examples, etc.

Research shows that note taking significantly
aids learning.

Taking relevant notes is a lot easier If you
familiarise yourself with the relevant parts of

the typeset lecture notes prior to each
lecture!

COMP2012/G52LACLanguages and ComputationLecture 1 10/35

Content (1)

° ° ° ° ° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.11/35

Content (1)

The notion of a formal language

))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.11/35

Content (1)

The notion of a formal language

Description of different classes of languages:
Regular expressions
Grammars

))))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.11/35

Content (1)

The notion of a formal language

Description of different classes of languages:
Regular expressions
Grammars

Recognition of different classes of languages:
Finite Automata
Push Down Automata

COMP2012/G52LACLanguages and ComputationLecture 1 11/35

Content (1)

The notion of a formal language

Description of different classes of languages:
Regular expressions
Grammars

Recognition of different classes of languages:
Finite Automata

Push Down Automata
Applications: Scanning and Parsing

COMP2012/G52LACLanguages and ComputationLecture 1 11/35

Content (2)

Leading to:

Content (2)

Leading to:

General notions of computation:
Turing machines
Lambda calculus

))))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.12/35

Content (2)

Leading to:

General notions of computation:
Turing machines
Lambda calculus

Fundamental questions such as
What can be computed at all?
What can be computed efficiently?

COMP2012/G52LACLanguages and ComputationLecture 1 12/35

Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {
int n;
vold printNSgrd() {
System.out.println(n * n);

J

COMP2012/G52LACLanguages and ComputationLecture 1 — p.13/35

Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {
int n;
vold printNSgrd() {
System.out.println(n * n);
J
J

Fundamentally a string of characters.

COMP2012/G52LACLanguages and ComputationLecture 1 — p.13/35

Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {
int n;
vold printNSgrd() {
System.out.println(n * n);

J
J

Fundamentally a string of characters.

But lots of structure to valid Java code, e.g.:
Keywords, identifiers, operators
Nesting; e.g. method inside class

COMP2012/G52LACLanguages and ComputationLecture 1 — p.13/35

Example: Languages and Grammars (2)

How to describe the set of strings that are
valid Java?

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Example: Languages and Grammars (2)

How to describe the set of strings that are
valid Java?

Given a string, how to determine if it is a valid
Java program or not?

COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Example: Languages and Grammars (2)
How to describe the set of strings that are
valid Java?

Given a string, how to determine if it is a valid
Java program or not?

How to recover the structure of a Java
program from a “flat” string?

COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Example: Languages and Grammars (2)

How to describe the set of strings that are
valid Java?

Given a string, how to determine if it is a valid
Java program or not?

How to recover the structure of a Java
program from a “flat” string?

We will study:

COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Example: Languages and Grammars (2)

How to describe the set of strings that are
valid Java?

Given a string, how to determine if it is a valid
Java program or not?

How to recover the structure of a Java
program from a “flat” string?

We will study:

Regular expressions and grammatrs:
precise descriptions of languages.

COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Example: Languages and Grammars (2)

How to describe the set of strings that are
valid Java?

Given a string, how to determine if it is a valid
Java program or not?

How to recover the structure of a Java
program from a “flat” string?

We will study:

Regular expressions and grammatrs:
precise descriptions of languages.

Various kinds of automata: decide if a string
belongs to a language or not.

COMP2012/G52LACLanguages and ComputationLecture 1 — p.14/35

Noam Chomsky (1)

Noam Chomsky (1928-):

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 15/35

Noam Chomsky (1)

Noam Chomsky (1928-):

American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.

COMP2012/G52LACLanguages and ComputationLecture 1 15/35

Noam Chomsky (1)

Noam Chomsky (1928-):

American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.

Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.

COMP2012/G52LACLanguages and ComputationLecture 1 15/35

The Chomsky Hierarchy

All languages
Type 0 or recursively enumerable languages

" Decidable languages
. Turing machines

Type 1 or context sensitive
languages

Type 2 or context free
languages

pushdown automata

Type 3 or
regular languages

finite automata

° ° ° ° ° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.17/35

Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n > 1?

while (n > 1) {
1f even(n) {
n =n/ 2;
} else {
n =n 3 + 1;
}

COMP2012/G52LACLanguages and ComputationLecture 1 18/35

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 19/35

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

/7,22,11,34,17, 32, 26, 13, 40, 20, 10, 5,
16, 8,4, 2, 1

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

/7,22,11,34,17, 32, 26, 13, 40, 20, 10, 5,
16, 8,4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.
Say we start with n = 7, for example:

/7,22,11,34,17, 32, 26, 13, 40, 20, 10, 5,
16, 8,4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 2°V)), it does terminate . . .

Example: The Halting Problem (2)

Not as easy to answer as it might first seem.
Say we start with n = 7, for example:

/7,22,11,34,17, 32, 26, 13, 40, 20, 10, 5,
16, 8,4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 2°V)), it does terminate . . .

... but so far, no proofl (See e.g. Wikipedia.)

Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

COMP2012/G52LACLanguages and ComputationLecture 1 20/35

Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

COMP2012/G52LACLanguages and ComputationLecture 1 20/35

Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

This was first proved by the British mathematician
Alan Turing using Turing Machines.

COMP2012/G52LACLanguages and ComputationLecture 1 20/35

Alan Turing (1)

Alan Turing (1912—-1954).

COMP2012/G52LACLanguages and ComputationLecture 1 21/35

Alan Turing (1)

Alan Turing (1912—-1954).

Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).

Alan Turing (1)

Alan Turing (1912—-1954).

Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).

Instrumental in the success of British code
breaking efforts during WWII.

Alan Turing (1)

Alan Turing (1912—-1954).

Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).

Instrumental in the success of British code
breaking efforts during WWII.

PhD student of Alonzo Church

Alan Turing (2)

))))
COMP2012/G52LACLanguages and ComputationLecture 1 — p.22/35

Example: the A-Calculus

A-calculus is a theory of pure functions:

(Az.z)(Ay.y)

COMP2012/G52LACLanguages and ComputationLecture 1 23/35

Example: the A-Calculus

A-calculus is a theory of pure functions:

(A\z.x)(Ay.y)

Functional programming languages like
Haskell implements the A-calculus.

COMP2012/G52LACLanguages and ComputationLecture 1 23/35

Example: the A-Calculus

A-calculus is a theory of pure functions:

(A\z.x)(Ay.y)

Functional programming languages like
Haskell implements the A-calculus.

Both the Turing machine and the A-calculus
are universal models of computation:
equivalent in capabilities.

COMP2012/G52LACLanguages and ComputationLecture 1 23/35

Alonzo Church (1)

Alonzo Church (1903—-1995):
Alan Turing’s PhD advisor

Alonzo Church (1)

Alonzo Church (1903—-1995):
Alan Turing’'s PhD advisor

Introduced the)\-calculus (1936) to give a
precise definition of what problems are
“effectively calculable”.

Alonzo Church (1)

Alonzo Church (1903—-1995):
Alan Turing’'s PhD advisor

Introduced the)\-calculus (1936) to give a
precise definition of what problems are
“effectively calculable”.

Church-Turing thesis: What is “effectively
calculable” is exactly what can be computed
by a Turing machine.

Alonzo Church (2)

Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

COMP2012/G52LACLanguages and ComputationLecture 1 26/35

Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

Likely the most famous open problem in
computer science, dating back to the 1950s.

COMP2012/G52LACLanguages and ComputationLecture 1 26/35

Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

Likely the most famous open problem in
computer science, dating back to the 1950s.

“Quickly” here means in time proportional to a
polynomial in the size of the problem.

COMP2012/G52LACLanguages and ComputationLecture 1 26/35

Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

Likely the most famous open problem in
computer science, dating back to the 1950s.

“Quickly” here means in time proportional to a
polynomial in the size of the problem.

There is an abundance of important problems
where solutions can be checked quickly, but where
the best known algorithm for finding a solution

IS exponential in the size of the problem.

COMP2012/G52LACLanguages and ComputationLecture 1 — p.26/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3, —-2,8,—5,4,9}, the non-empty
subset {—5, -2, 3,4} sums to O.

COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3, —-2,8,—5,4,9}, the non-empty
subset {—5, -2, 3,4} sums to O.

Easy to check proposed solution: just add all
numbers.

COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3, —-2,8,—5,4,9}, the non-empty
subset {—5, -2, 3,4} sums to O.

Easy to check proposed solution: just add all
numbers. (How long would it take for set of
size n?)

COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3, —-2,8,—5,4,9}, the non-empty
subset {—5, -2, 3,4} sums to O.

Easy to check proposed solution: just add all
numbers. (How long would it take for set of

size n?)

But for finding a solution, no better way
known than essentially trying each possible
subset in turn.

COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3, —-2,8,—5,4,9}, the non-empty
subset {—5, -2, 3,4} sums to O.

Easy to check proposed solution: just add all
numbers. (How long would it take for set of

size n?)

But for finding a solution, no better way
known than essentially trying each possible
subset in turn. (How long would it take for set
of size n? How many subsets are there?)

COMP2012/G52LACLanguages and ComputationLecture 1 27/35

Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 28/35

Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:
A language is a (possibly infinite) set of
words.

COMP2012/G52LACLanguages and ComputationLecture 1 28/35

Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:
A language is a (possibly infinite) set of
words.

A word is a finite sequence (or string) of
symbols.

COMP2012/G52LACLanguages and ComputationLecture 1 28/35

Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:
A language is a (possibly infinite) set of
words.

A word is a finite sequence (or string) of
symbols.

e denotes the empty word, the sequence of zero
symbols.

COMP2012/G52LACLanguages and ComputationLecture 1 28/35

Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:
A language is a (possibly infinite) set of
words.

A word is a finite sequence (or string) of
symbols.

e denotes the empty word, the sequence of zero
symbols.

The term string is often used interchangeably
with the term word.

COMP2012/G52LACLanguages and ComputationLecture 1 28/35

Symbols and Alphabets

What is a symbol, then?

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 29/35

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Y.
which is a finite set.

COMP2012/G52LACLanguages and ComputationLecture 1 29/35

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Y.
which is a finite set.

A common (and important) instance is
> = {0,1}.

COMP2012/G52LACLanguages and ComputationLecture 1 29/35

Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Y.
which is a finite set.

A common (and important) instance is
> = {0,1}.

e, the empty word, is never a symbol of an
alphabet.

COMP2012/G52LACLanguages and ComputationLecture 1 29/35

Languages: Examples

alphabet ¥, = {a, b}
words ?

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet ¥, = {a, b}
words e, a,b, aa,ab, ba, bb,

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet ¥, = {a, b}
words e,a,b, aa,ab, ba, bb,
aaa, aab, aba, abb, baa, bab, . . .

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet Y, = {a, b}
words e,a,b, aa,ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .
languages ?

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet Y, = {a, b}
words e,a,b, aa,ab, ba, bb,
aaa, aab, aba, abb, baa, bab, . . .

languages 0,{e}, {a},{b},{a,aa},

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet Y, = {a, b}
words e,a,b, aa,ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages 0,{e}, {a},{b},{a,aa},

{e,a,aa,aaat,

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet Y, = {a, b}
words e,a,b, aa,ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages 0,{e}, {a},{b},{a,aa},

{e,a,aa,aaat,

1a”|n 2 0},

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet
words

languages

Y, = {a, b}

e,a,b,aa,ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

0,{€} {a},{b}, {a, aa},

{e,a,aa,aaat,
{a"|n = 0},

{a"b"|n > 0,neven}

COMP2012/G52LACLanguages and ComputationLecture 1 30/35

Languages: Examples

alphabet Y, = {a, b}
words e, a,b, aa,ab, ba, b,
aaa, aab, aba, abb, baa, bab, . . .
languages 0,{e},{a}, {0}, {a,aa},
{e,a,aa,aaa}l,
{a"|n = 0},

{a"b"|n > 0,neven}

Note the distinction between ¢, (), and {¢}!

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 30/35

All Words Over an Alphabet (1)

Given an alphabet > we define the set >* as set
of words (or sequences) over X.:

The empty word € € >*.

given a symbol z € > and a word w € >*,
Tw € 2.

These are all elements in >2*.
This is called an inductive definition.

COMP2012/G52LACLanguages and ComputationLecture 1 31/35

All Words Over an Alphabet (1)

Given an alphabet > we define the set >* as set
of words (or sequences) over X.:

The empty word € € >*.

given a symbol z € > and a word w € >*,
Tw € 2.

These are all elements in >2*.
This is called an inductive definition.

Is >* always non-empty?

COMP2012/G52LACLanguages and ComputationLecture 1 31/35

All Words Over an Alphabet (1)

Given an alphabet > we define the set >* as set
of words (or sequences) over X.:

The empty word € € >*.

given a symbol z € > and a word w € >*,
Tw € 2.

These are all elements in >2*.
This is called an inductive definition.

Is X* always non-empty? Always infinite?

COMP2012/G52LACLanguages and ComputationLecture 1 31/35

All Words over an Alphabet (2)

Example: Given X = {0, 1}, some elements of >*
are

¢ (the empty word)

0, 1

00, 10, 01, 11

000, 100, 010, 110, 001, 101, 011, 111

COMP2012/G52LACLanguages and ComputationLecture 1 32/35

All Words over an Alphabet (2)

Example: Given X = {0, 1}, some elements of >*
are

¢ (the empty word)

0, 1

00, 10, 01, 11

000, 100, 010, 110, 001, 101, 011, 111

We are just applying the inductive definition.

COMP2012/G52LACLanguages and ComputationLecture 1 32/35

All Words over an Alphabet (2)

Example: Given X = {0, 1}, some elements of >*
are

¢ (the empty word)

0, 1

00, 10, 01, 11

000, 100, 010, 110, 001, 101, 011, 111

We are just applying the inductive definition.

Note: although there are infinitely many words in
>¥* (when X #£ ()), each word has a finite length!

COMP2012/G52LACLanguages and ComputationLecture 1

—p.32/35

Examples of Languages (1)

Some examples of languages:

° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 33/35

Examples of Languages (1)

Some examples of languages:

The set {0010, 00000000, ¢} is a language over
> = {0,1}.

COMP2012/G52LACLanguages and ComputationLecture 1 33/35

Examples of Languages (1)

Some examples of languages:
The set {0010, 00000000, ¢} is a language over
> ={0,1}.
This is an example of a finite language.

COMP2012/G52LACLanguages and ComputationLecture 1 33/35

Examples of Languages (1)

Some examples of languages:
The set {0010, 00000000, ¢} is a language over
> ={0,1}.
This is an example of a finite language.

The set of words with odd length over
>, = {1}. (Finite or infinite?)

COMP2012/G52LACLanguages and ComputationLecture 1 33/35

Examples of Languages (1)

Some examples of languages:

The set {0010, 00000000, ¢} is a language over
> ={0,1}.

This is an example of a finite language.

The set of words with odd length over

>, = {1}. (Finite or infinite?)

The set of words that contain the same
number of 0s and 1s is a language over
>, = {0, 1}. (Finite or infinite?)

COMP2012/G52LACLanguages and ComputationLecture 1 33/35

Examples of Languages (2)

The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

COMP2012/G52LACLanguages and ComputationLecture 1 34/35

Examples of Languages (2)

The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

The set of correct Java programs. This is a
language over the set of UNICODE
characters.

COMP2012/G52LACLanguages and ComputationLecture 1 34/35

Examples of Languages (2)

The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

The set of correct Java programs. This is a
language over the set of UNICODE
characters.

The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over > = {0, 1}.

COMP2012/G52LACLanguages and ComputationLecture 1 34/35

Language Membership

Fundamental question for a language L: w € L7

° ° ° ° ° °
COMP2012/G52LACLanguages and ComputationLecture 1 — p.35/35

Language Membership

Fundamental question for a language L: w € L7

L finite:

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: ?

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)
L infinite:

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)
L infinite: ?

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)
L infinite: ?
We need:

A finite (and preferably concise) formal
description of L.

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)
L infinite: ?
We need:

A finite (and preferably concise) formal
description of L.

An algorithmic method to decide if w € L
given a suitable description.

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

Language Membership

Fundamental question for a language L: w € L7

L finite: Easy! (Enumerate L and check)
L infinite: ?
We need:

A finite (and preferably concise) formal
description of L.

An algorithmic method to decide if w € L
given a suitable description.

Various approaches to achieve this will be key a
theme throughout the module.

COMP2012/G52LACLanguages and ComputationLecture 1 35/35

	Finding People and Information
	Aims of the Course
	Organization (1)
	Organization (2)
	Literature (1)
	Literature (2)
	Literature (3)
	The Lecture Notes
	Your Own Notes
	Content (1)
	Content (2)
	Example: Languages and Grammars (1)
	Example: Languages and Grammars (2)
	Noam Chomsky (1)
	Noam Chomsky (2)
	The Chomsky Hierarchy
	Example: The Halting Problem (1)
	Example: The Halting Problem (2)
	Example: The Halting Problem (3)
	Alan Turing (1)
	Alan Turing (2)
	Example: the $lambda $-Calculus
	Alonzo Church (1)
	Alonzo Church (2)
	Example: P versus NP (1)
	Example: P versus NP (2)
	Introduction to Languages
	Symbols and Alphabets
	Languages: Examples
	All Words Over an Alphabet (1)
	All Words over an Alphabet (2)
	Examples of Languages (1)
	Examples of Languages (2)
	Language Membership

