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Finding People and Information

• Venanzio Capretta
Room C05

• Henrik Nilsson
Room A08

• Moodle

• Main module web page:
www.cs.nott.ac.uk/~nhn/COMP2012

• Moodle forum!
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Aims of the Course

• To familiarize you with key Computer Science
concepts in central areas:

- Automata Theory

- Formal Languages

- Models of Computation

- Complexity Theory
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Aims of the Course

• To familiarize you with key Computer Science
concepts in central areas:

- Automata Theory

- Formal Languages

- Models of Computation

- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT.
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Aims of the Course

• To familiarize you with key Computer Science
concepts in central areas:

- Automata Theory

- Formal Languages

- Models of Computation

- Complexity Theory

• To equip you with tools with wide applicability
in the fields of CS and IT.

Draws from: COMP1001/G51MCS
Feeds into: COMP3012/G53CMP,
COMP3001/G53COM, COMP4001/G54FOP

COMP2012/G52LACLanguages and ComputationLecture 1 – p.3/35



Organization (1)

• Lectures:

- Two 1 h lectures per week (back to back).

- Detailed but provisional schedule available
on the module web page.
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Organization (1)

• Lectures:

- Two 1 h lectures per week (back to back).

- Detailed but provisional schedule available
on the module web page.

• Coursework:

- 3 problem sets.

- Made available via the module web page.

- Best 2 counts.

- Deadlines: 27/2, 20/3, 10/4.

- Released a week prior to submission deadline.
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Organization (2)

• Assessment:

- Coursework, 25 %

- 2 hour written examination, 75 %
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Organization (2)

• Assessment:

- Coursework, 25 %

- 2 hour written examination, 75 %

• However, resits are by 100 % written
examination (standard School policy)
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Literature (1)

• Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.
Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.
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Literature (1)

• Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.
Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.

• Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 6th
edition, Jones & Bartlett Publishers, 2017.
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Literature (1)

• Main reference: John E. Hopcroft, Rajeev
Motwani, & Jeffrey D. Ullman.
Introduction to Automata Theory, Languages,
and Computation, 3rd edition, Pearson, 2007.

• Alternative/complement: Linz. An Introduction
to Formal Languages and Automata, 6th
edition, Jones & Bartlett Publishers, 2017.

• The lecture notes by Altenkirch, Capretta,
Nilsson (January 2019).
Available via the module web page.
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Literature (2)

• Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

COMP2012/G52LACLanguages and ComputationLecture 1 – p.7/35



Literature (2)

• Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

• Your own notes from the lectures!
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Literature (2)

• Supplementary material; e.g., slides, sample
program code.
(Available via the module web page.)

• Your own notes from the lectures!

• The lecture schedule contains detailed
lecture-by-lecture references to the literature.
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Literature (3)
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The Lecture Notes

COMP2012/G52LACLanguages and ComputationLecture 1 – p.9/35



The Lecture Notes

• Comprehensive, typeset lecture notes.
(At present around 160 pages.)
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The Lecture Notes

• Comprehensive, typeset lecture notes.
(At present around 160 pages.)

• Carefully aligned with the lectures.
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The Lecture Notes

• Comprehensive, typeset lecture notes.
(At present around 160 pages.)

• Carefully aligned with the lectures.

• Covers everything said in the lectures (and
more).
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The Lecture Notes

• Comprehensive, typeset lecture notes.
(At present around 160 pages.)

• Carefully aligned with the lectures.

• Covers everything said in the lectures (and
more).

• Exercises with detailed model solutions (in
response to student feedback).
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The Lecture Notes

• Comprehensive, typeset lecture notes.
(At present around 160 pages.)

• Carefully aligned with the lectures.

• Covers everything said in the lectures (and
more).

• Exercises with detailed model solutions (in
response to student feedback).

• The exercises are quite similar to typical
coursework problems.
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Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:
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Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

• Lectures may provide an alternative
perspective, use different examples, etc.
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Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

• Lectures may provide an alternative
perspective, use different examples, etc.

• Research shows that note taking significantly
aids learning.
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Your Own Notes

You are strongly encourage to take your own
notes as well during lectures because:

• Lectures may provide an alternative
perspective, use different examples, etc.

• Research shows that note taking significantly
aids learning.

Taking relevant notes is a lot easier if you
familiarise yourself with the relevant parts of
the typeset lecture notes prior to each
lecture!

COMP2012/G52LACLanguages and ComputationLecture 1 – p.10/35



Content (1)
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Content (1)

• The notion of a formal language
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Content (1)

• The notion of a formal language

• Description of different classes of languages:

- Regular expressions

- Grammars
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Content (1)

• The notion of a formal language

• Description of different classes of languages:

- Regular expressions

- Grammars

• Recognition of different classes of languages:

- Finite Automata

- Push Down Automata
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Content (1)

• The notion of a formal language

• Description of different classes of languages:

- Regular expressions

- Grammars

• Recognition of different classes of languages:

- Finite Automata

- Push Down Automata

• Applications: Scanning and Parsing
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Content (2)

Leading to:
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Content (2)

Leading to:

• General notions of computation:

- Turing machines

- Lambda calculus
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Content (2)

Leading to:

• General notions of computation:

- Turing machines

- Lambda calculus

• Fundamental questions such as

- What can be computed at all?

- What can be computed efficiently?
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Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {

int n;

void printNSqrd() {

System.out.println(n * n);

}

}
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Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {

int n;

void printNSqrd() {

System.out.println(n * n);

}

}

• Fundamentally a string of characters.
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Example: Languages and Grammars (1)

Consider the following Java fragment:

class Foo {

int n;

void printNSqrd() {

System.out.println(n * n);

}

}

• Fundamentally a string of characters.

• But lots of structure to valid Java code, e.g.:

- Keywords, identifiers, operators

- Nesting; e.g. method inside class
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?

• Given a string, how to determine if it is a valid
Java program or not?
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?

• Given a string, how to determine if it is a valid
Java program or not?

• How to recover the structure of a Java
program from a “flat” string?
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?

• Given a string, how to determine if it is a valid
Java program or not?

• How to recover the structure of a Java
program from a “flat” string?

We will study:
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?

• Given a string, how to determine if it is a valid
Java program or not?

• How to recover the structure of a Java
program from a “flat” string?

We will study:

• Regular expressions and grammars:
precise descriptions of languages.
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Example: Languages and Grammars (2)

• How to describe the set of strings that are
valid Java?

• Given a string, how to determine if it is a valid
Java program or not?

• How to recover the structure of a Java
program from a “flat” string?

We will study:

• Regular expressions and grammars:
precise descriptions of languages.

• Various kinds of automata: decide if a string
belongs to a language or not.
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Noam Chomsky (1)

Noam Chomsky (1928–):
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Noam Chomsky (1)

Noam Chomsky (1928–):

• American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.
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Noam Chomsky (1)

Noam Chomsky (1928–):

• American linguist who introduced Context
Free Grammars in an attempt to describe
natural languages formally.

• Also introduced the Chomsky Hierarchy
which classifies grammars and languages
and their descriptive power.
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Noam Chomsky (2)
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The Chomsky Hierarchy

languages

finite automata

pushdown automata

Type 2 or context free

   
 

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages
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Example: The Halting Problem (1)

Consider the following program. Does it
terminate for all values of n ≥ 1?

while (n > 1) {

if even(n) {

n = n / 2;

} else {

n = n * 3 + 1;

}

}
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

COMP2012/G52LACLanguages and ComputationLecture 1 – p.19/35



Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 260!), it does terminate . . .
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Example: The Halting Problem (2)

Not as easy to answer as it might first seem.

Say we start with n = 7, for example:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5,
16, 8, 4, 2, 1

The sequence involved is known as the
hailstone sequence and Collatz conjecture
says that the number 1 will always be reached.

In fact, for all numbers that have been tried
(up to 260!), it does terminate . . .

. . . but so far, no proof! (See e.g. Wikipedia.)
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Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:
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Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.
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Example: The Halting Problem (3)

The following important decidability result should
then perhaps not come as a total surprise:

It is impossible to write a program that
decides if another, arbitrary, program
terminates (halts) or not.

This was first proved by the British mathematician
Alan Turing using Turing Machines.
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Alan Turing (1)

Alan Turing (1912–1954):
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Alan Turing (1)

Alan Turing (1912–1954):

• Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).
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Alan Turing (1)

Alan Turing (1912–1954):

• Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).

• Instrumental in the success of British code
breaking efforts during WWII.
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Alan Turing (1)

Alan Turing (1912–1954):

• Introduced an abstract model of computation,
Turing Machines (1936), to give a precice
definition of what problems are “effectively
calculable” (can be solved mechanically).

• Instrumental in the success of British code
breaking efforts during WWII.

• PhD student of Alonzo Church
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Alan Turing (2)
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Example: the λ-Calculus

• λ-calculus is a theory of pure functions:

(λx.x)(λy.y)
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Example: the λ-Calculus

• λ-calculus is a theory of pure functions:

(λx.x)(λy.y)

• Functional programming languages like
Haskell implements the λ-calculus.
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Example: the λ-Calculus

• λ-calculus is a theory of pure functions:

(λx.x)(λy.y)

• Functional programming languages like
Haskell implements the λ-calculus.

• Both the Turing machine and the λ-calculus
are universal models of computation:
equivalent in capabilities.
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Alonzo Church (1)

Alonzo Church (1903–1995):

• Alan Turing’s PhD advisor
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Alonzo Church (1)

Alonzo Church (1903–1995):

• Alan Turing’s PhD advisor

• Introduced the λ-calculus (1936) to give a
precise definition of what problems are
“effectively calculable”.
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Alonzo Church (1)

Alonzo Church (1903–1995):

• Alan Turing’s PhD advisor

• Introduced the λ-calculus (1936) to give a
precise definition of what problems are
“effectively calculable”.

• Church-Turing thesis: What is “effectively
calculable” is exactly what can be computed
by a Turing machine.
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Alonzo Church (2)
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Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”
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Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

• Likely the most famous open problem in
computer science, dating back to the 1950s.
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Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

• Likely the most famous open problem in
computer science, dating back to the 1950s.

• “Quickly” here means in time proportional to a
polynomial in the size of the problem.
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Example: P versus NP (1)

“Can every problem whose solution can be
checked quickly by a computer also be solved
quickly by a computer?”

• Likely the most famous open problem in
computer science, dating back to the 1950s.

• “Quickly” here means in time proportional to a
polynomial in the size of the problem.

• There is an abundance of important problems
where solutions can be checked quickly, but where
the best known algorithm for finding a solution
is exponential in the size of the problem.
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Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
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Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3,−2, 8,−5, 4, 9}, the non-empty
subset {−5,−2, 3, 4} sums to 0.
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Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3,−2, 8,−5, 4, 9}, the non-empty
subset {−5,−2, 3, 4} sums to 0.

• Easy to check proposed solution: just add all
numbers.
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Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3,−2, 8,−5, 4, 9}, the non-empty
subset {−5,−2, 3, 4} sums to 0.

• Easy to check proposed solution: just add all
numbers. (How long would it take for set of
size n?)

COMP2012/G52LACLanguages and ComputationLecture 1 – p.27/35



Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3,−2, 8,−5, 4, 9}, the non-empty
subset {−5,−2, 3, 4} sums to 0.

• Easy to check proposed solution: just add all
numbers. (How long would it take for set of
size n?)

• But for finding a solution, no better way
known than essentially trying each possible
subset in turn.
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Example: P versus NP (2)

Subset sum problem: Does some non-empty
subset of given set of integers sum to zero?
E.g. given {3,−2, 8,−5, 4, 9}, the non-empty
subset {−5,−2, 3, 4} sums to 0.

• Easy to check proposed solution: just add all
numbers. (How long would it take for set of
size n?)

• But for finding a solution, no better way
known than essentially trying each possible
subset in turn. (How long would it take for set
of size n? How many subsets are there?)
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Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:
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Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.
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Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.

• A word is a finite sequence (or string) of
symbols.
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Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.

• A word is a finite sequence (or string) of
symbols.

ǫ denotes the empty word, the sequence of zero
symbols.
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Introduction to Languages

The terms language and word are used in a
strict technical sense in this course:

• A language is a (possibly infinite) set of
words.

• A word is a finite sequence (or string) of
symbols.

ǫ denotes the empty word, the sequence of zero
symbols.

The term string is often used interchangeably
with the term word.
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Symbols and Alphabets

What is a symbol, then?

COMP2012/G52LACLanguages and ComputationLecture 1 – p.29/35



Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.
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Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.
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Symbols and Alphabets

What is a symbol, then?

Anything, but it has to come from an alphabet Σ
which is a finite set.

A common (and important) instance is
Σ = {0, 1}.

ǫ, the empty word, is never a symbol of an
alphabet.
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Languages: Examples

alphabet Σ = {a, b}

words ?
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ?
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},
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words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}
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Languages: Examples

alphabet Σ = {a, b}

words ǫ, a, b, aa, ab, ba, bb,

aaa, aab, aba, abb, baa, bab, . . .

languages ∅, {ǫ}, {a}, {b}, {a, aa},

{ǫ, a, aa, aaa},

{an|n ≥ 0},

{anbn|n ≥ 0, n even}

Note the distinction between ǫ, ∅, and {ǫ}!
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All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.

• given a symbol x ∈ Σ and a word w ∈ Σ∗,
xw ∈ Σ∗.

• These are all elements in Σ∗.

This is called an inductive definition.
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All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.

• given a symbol x ∈ Σ and a word w ∈ Σ∗,
xw ∈ Σ∗.

• These are all elements in Σ∗.

This is called an inductive definition.

Is Σ∗ always non-empty?
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All Words Over an Alphabet (1)

Given an alphabet Σ we define the set Σ∗ as set
of words (or sequences) over Σ:

• The empty word ǫ ∈ Σ∗.

• given a symbol x ∈ Σ and a word w ∈ Σ∗,
xw ∈ Σ∗.

• These are all elements in Σ∗.

This is called an inductive definition.

Is Σ∗ always non-empty? Always infinite?
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All Words over an Alphabet (2)

Example: Given Σ = {0, 1}, some elements of Σ∗

are

• ǫ (the empty word)

• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

COMP2012/G52LACLanguages and ComputationLecture 1 – p.32/35



All Words over an Alphabet (2)

Example: Given Σ = {0, 1}, some elements of Σ∗

are

• ǫ (the empty word)

• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.
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All Words over an Alphabet (2)

Example: Given Σ = {0, 1}, some elements of Σ∗

are

• ǫ (the empty word)

• 0, 1

• 00, 10, 01, 11

• 000, 100, 010, 110, 001, 101, 011, 111

• . . .

We are just applying the inductive definition.

Note: although there are infinitely many words in
Σ∗ (when Σ 6= ∅), each word has a finite length!
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Examples of Languages (1)

Some examples of languages:
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Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
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Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.
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Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}. (Finite or infinite?)
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Examples of Languages (1)

Some examples of languages:

• The set {0010, 00000000, ǫ} is a language over
Σ = {0, 1}.
This is an example of a finite language.

• The set of words with odd length over
Σ = {1}. (Finite or infinite?)

• The set of words that contain the same
number of 0s and 1s is a language over
Σ = {0, 1}. (Finite or infinite?)
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Examples of Languages (2)

• The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.
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Examples of Languages (2)

• The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.
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Examples of Languages (2)

• The set of palindromes (words that read the
same forwards and backwards, like abba) is a
language for any alphabet.

• The set of correct Java programs. This is a
language over the set of UNICODE
characters.

• The set of programs that, if executed
successfully on a Windows machine, prints
the text “Hello World!” in a window. This is a
language over Σ = {0, 1}.
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Language Membership

Fundamental question for a language L: w ∈ L?
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Fundamental question for a language L: w ∈ L?

• L finite:
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Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)
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Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

COMP2012/G52LACLanguages and ComputationLecture 1 – p.35/35



Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

We need:

• A finite (and preferably concise) formal
description of L.
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Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

We need:

• A finite (and preferably concise) formal
description of L.

• An algorithmic method to decide if w ∈ L

given a suitable description.
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Language Membership

Fundamental question for a language L: w ∈ L?

• L finite: Easy! (Enumerate L and check)

• L infinite: ?

We need:

• A finite (and preferably concise) formal
description of L.

• An algorithmic method to decide if w ∈ L

given a suitable description.

Various approaches to achieve this will be key a
theme throughout the module.
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