COMP2012/G52LAC Languages and Computation Lecture 3 Non-deterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham

The *Extended Transition Function* is defined on a state and a *word* (string of symbols) instead of on a single symbol.

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the extended transition function is defined by:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to Q \\ \hat{\delta}(q,\epsilon) &= q \\ \hat{\delta}(q,xw) &= \hat{\delta}(\delta(q,x),w) \end{split}$$

where $q \in Q$, $x \in \Sigma$, $w \in \Sigma^*$.

Recap: Formal Definition of DFA

Formally, a *Deterministic Finite Automaton* or *DFA* is defined by a 5-tuple

 $(Q, \Sigma, \delta, q_0, F)$

where		
Q	:	Finite set of States
Σ	:	Alphabet (finite set of symbols)
$\delta \in Q \times \Sigma \to Q$:	Transition Function
$q_0 \in Q$:	Initial or Start State
$F \subseteq Q$:	Accepting (or Final) States

Recap: Language of a DFA

The *language* L(A) defined by a DFA A is the set or words *accepted* by the DFA. For a DFA

 $A = (Q, \Sigma, \delta, q_0, F)$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

COMP2012/G52LACL anguages and ComputationLecture 3 - p.2/8

Formal Definition of NFA (1)

Formally, a *Nondeterministic Finite Automaton* or *NFA* is defined by a 5-tuple

 $(Q, \Sigma, \delta, S, F)$

where

Q	:	Finite set of States
Σ	:	Alphabet (finite set of symbols)
$\delta \in Q \times \Sigma \to \mathcal{P}(Q)$:	Transition Function
$S \subseteq Q$:	Initial States
$F \subseteq Q$:	Accepting (or Final) States

Extended Transition Function

For an NFA, The *Extended Transition Function* is defined on a *set* of states and a *word* (string of symbols).

For a NFA $A = (Q, \Sigma, \delta, S, F)$, the extended transition function is defined by:

$$\hat{\delta} \in \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
$$\hat{\delta}(P, \epsilon) = P$$
$$\hat{\delta}(P, xw) = \hat{\delta}(\bigcup \{\delta(q, x) \mid q \in P\}, w)$$

where $P \in \mathcal{P}(Q)$ (or $P \subseteq Q$), $x \in \Sigma$, $w \in \Sigma^*$.

COMP2012/G52LACLanguages and ComputationLecture 3 - p.7/8

COMP2012/G52LACL anguages and ComputationLecture 3 - p.5/8

Formal Definition of NFA (2)

Note:

- The transition function maps a state and an input symbol to *zero or more* successor states. Thus an NFA has "choice"; hence "nondeterministic".
- However, nothing ambiguous about the *language* defined by an NFA! *Not* the case that some word w ∈ L(A) sometimes, and w ∉ L(A) other times for some NFA A.
- How? By considering *all possible* states simultaneously.

Language of an NFA

The *language* L(A) defined by an NFA A is the set or words *accepted* by the NFA. For an NFA

 $A = (Q, \Sigma, \delta, S, F)$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(S, w) \cap F \neq \emptyset \}$$

COMP2012/G52LACLanguages and ComputationLecture 3 – p.8/8

COMP2012/G52LACLanguages and ComputationLecture 3 - p.6/8