
COMP2012/G52LAC

Languages and Computation
Lecture 3

Non-deterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 3 – p.1/8



Recap: Formal Definition of DFA

Formally, a Deterministic Finite Automaton or
DFA is defined by a 5-tuple

(Q,Σ, δ, q0, F )

where
Q : Finite set of States

Σ : Alphabet (finite set of symbols)

δ ∈ Q× Σ → Q : Transition Function

q0 ∈ Q : Initial or Start State

F ⊆ Q : Accepting (or Final) States

COMP2012/G52LACLanguages and ComputationLecture 3 – p.2/8



Recap: Extended Transition Function

The Extended Transition Function is defined
on a state and a word (string of symbols) instead
of on a single symbol.

For a DFA A = (Q,Σ, δ, q0, F ), the extended
transition function is defined by:

δ̂ ∈ Q× Σ∗ → Q

δ̂(q, ǫ) = q

δ̂(q, xw) = δ̂(δ(q, x), w)

where q ∈ Q, x ∈ Σ, w ∈ Σ∗.

COMP2012/G52LACLanguages and ComputationLecture 3 – p.3/8



Recap: Language of a DFA

The language L(A) defined by a DFA A is the
set or words accepted by the DFA. For a DFA

A = (Q,Σ, δ, q0, F )

the language is defined by

L(A) = { w ∈ Σ∗ | δ̂(q0, w) ∈ F }

COMP2012/G52LACLanguages and ComputationLecture 3 – p.4/8



Formal Definition of NFA (1)

Formally, a Nondeterministic Finite Automaton
or NFA is defined by a 5-tuple

(Q,Σ, δ, S, F )

where
Q : Finite set of States

Σ : Alphabet (finite set of symbols)

δ ∈ Q× Σ → P(Q) : Transition Function

S ⊆ Q : Initial States

F ⊆ Q : Accepting (or Final) States

COMP2012/G52LACLanguages and ComputationLecture 3 – p.5/8



Formal Definition of NFA (2)

Note:

COMP2012/G52LACLanguages and ComputationLecture 3 – p.6/8



Formal Definition of NFA (2)

Note:

• The transition function maps a state and an
input symbol to zero or more successor
states. Thus an NFA has “choice”; hence
“nondeterministic”.

COMP2012/G52LACLanguages and ComputationLecture 3 – p.6/8



Formal Definition of NFA (2)

Note:

• The transition function maps a state and an
input symbol to zero or more successor
states. Thus an NFA has “choice”; hence
“nondeterministic”.

• However, nothing ambiguous about the
language defined by an NFA! Not the case
that some word w ∈ L(A) sometimes, and
w /∈ L(A) other times for some NFA A.

COMP2012/G52LACLanguages and ComputationLecture 3 – p.6/8



Formal Definition of NFA (2)

Note:

• The transition function maps a state and an
input symbol to zero or more successor
states. Thus an NFA has “choice”; hence
“nondeterministic”.

• However, nothing ambiguous about the
language defined by an NFA! Not the case
that some word w ∈ L(A) sometimes, and
w /∈ L(A) other times for some NFA A.

• How? By considering all possible states
simultaneously.

COMP2012/G52LACLanguages and ComputationLecture 3 – p.6/8



Extended Transition Function

For an NFA, The Extended Transition Function
is defined on a set of states and a word (string
of symbols).

For a NFA A = (Q,Σ, δ, S, F ), the extended
transition function is defined by:

δ̂ ∈ P(Q)× Σ∗ → P(Q)

δ̂(P, ǫ) = P

δ̂(P, xw) = δ̂(
⋃

{δ(q, x) | q ∈ P}, w)

where P ∈ P(Q) (or P ⊆ Q), x ∈ Σ, w ∈ Σ∗.
COMP2012/G52LACLanguages and ComputationLecture 3 – p.7/8



Language of an NFA

The language L(A) defined by an NFA A is the
set or words accepted by the NFA. For an NFA

A = (Q,Σ, δ, S, F )

the language is defined by

L(A) = { w ∈ Σ∗ | δ̂(S,w) ∩ F 6= ∅ }

COMP2012/G52LACLanguages and ComputationLecture 3 – p.8/8


	Recap: Formal Definition of DFA
	Recap: Extended Transition Function
	Recap: Language of a DFA
	Formal Definition of NFA (1)
	Formal Definition of NFA (2)
	Extended Transition Function
	Language of an NFA

