COMP2012/G52LAC Languages and Computation Lecture 4 Equivalence between NFA and DFA

Henrik Nilsson

University of Nottingham

Recap: Formal Definition of NFA (2)

Note:

- The transition function maps a state and an input symbol to *zero or more* successor states. Thus an NFA has "choice"; hence "nondeterministic".
- However, nothing ambiguous about the *language* defined by an NFA! *Not* the case that some word w ∈ L(A) sometimes, and w ∉ L(A) other times for some NFA A.
- How? By considering *all possible* states simultaneously.
 - COMP2012/G52LACLanguages and ComputationLecture 4 p.3/8

COMP2012/G52LACL anguages and ComputationLecture 4 - p.1/8

Recap: Formal Definition of NFA (1)

Formally, a *Nondeterministic Finite Automaton* or *NFA* is defined by a 5-tuple

 $(Q, \Sigma, \delta, S, F)$

where		
Q	:	Finite set of States
\sum	:	Alphabet (finite set of symbols)
$\delta \in Q \times \Sigma \to \mathcal{P}(Q)$:	Transition Function
$S \subseteq Q$:	Initial States
$F \subseteq Q$:	Accepting (or Final) States
	_	

Recap: Extended Transition Function

For an NFA, The *Extended Transition Function* is defined on a *set* of states and a *word* (string of symbols).

For a NFA $A = (Q, \Sigma, \delta, S, F)$, the extended transition function is defined by:

$$\hat{\delta} \in \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
$$\hat{\delta}(P, \epsilon) = P$$
$$\hat{\delta}(P, xw) = \hat{\delta}(\bigcup \{\delta(q, x) \mid q \in P\}, w)$$

where $P \in \mathcal{P}(Q)$ (or $P \subseteq Q$), $x \in \Sigma$, $w \in \Sigma^*$.

COMP2012/G52LACL anguages and ComputationLecture 4 - p.2/8

Recap: Language of an NFA

The *language* L(A) defined by an NFA A is the set or words *accepted* by the NFA. For an NFA

 $A = (Q, \Sigma, \delta, S, F)$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(S, w) \cap F \neq \emptyset \}$$

The Subset Construction (2)

 We can thus *convert* an NFA into a DFA by considering each possible set of NFA states as a single DFA state!

The Subset Construction (1)

Observations:

- An NFA can be in one of a *set* of states.
- When reading an input symbol, the machine enters one of a *new set* of states.
- Which are the *sets* of possible states?
- Each set is a subset of Q, so the set of possible states is (at most) P(Q).
- But Q is finite. Thus $\mathcal{P}(Q)$ is *finite* too!
- There may be *lots* of states as $|\mathcal{P}(Q)| = 2^{|Q|}$. But the number of states is finite!

The Subset Construction (3)

Given an NFA A:

 $A = (Q, \Sigma, \delta, S, F)$

we construct the *equivalent* DFA D(A) as:

$$D(A) = (\mathcal{P}(Q), \Sigma, \delta_{D(A)}, S, F_{D(A)})$$

where

$$\delta_{D(A)}(P, x) = \bigcup \{ \delta(q, x) \mid q \in P \}$$

$$F_{D(A)} = \{ P \in \mathcal{P}(Q) \mid P \cap F \neq \emptyset \}$$

(Cf. def. $\hat{\delta}$ and language for NFA!)

COMP2012/G52LACL anguages and ComputationLecture 4 - p.6/8

COMP2012/G52LACL anguages and ComputationLecture 4 - p.5/8