COMP2012/G52LAC
 Languages and Computation
 Lecture 5
 Regular Expressions
 Henrik Nilsson
 University of Nottingham

Regular Expressions

- Automata describe languages in a somewhat indirect way: not always obvious what the defined language is.
- Regular Expressions offer a different, more direct way to describe languages.
- We will see (later) that the class of languages that can be described by regular expressions again is the same as those describable by DFAs and NFAs.
- This class is called the regular languages. Hence the name regular expressions.

Semantics of Regular Expressions

1. $L(\emptyset)=\emptyset$
2. $L(\epsilon)=\{\epsilon\}$
3. For all $x \in \Sigma, L(\mathbf{x})=\{x\}$
4. $L(E+F)=L(E) \cup L(F)$
5. $L(E F)=L(E) L(F)$
6. $L\left(E^{*}\right)=L(E)^{*}$
7. $L((E))=L(E)$

Recap: DFAs and NFAs (1)

Recap: DFAs and NFAs (2)

We have so far encountered two ways of

 describing formal languages:- Deterministic Finite Automata (DFA)

$$
\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

- Non-deterministic Finite Automata (NFA)

$$
(Q, \Sigma, \delta, S, F)
$$

Syntax of Regular Expressions

1. \emptyset is an RE
2. ϵ is an RE
3. For all $x \in \Sigma, \mathrm{x}$ is an RE (Handwriting convention: x is an RE)
4. If E and F are REs, so is $E+F$
5. If E and F are REs, so is $E F$
6. If E is an REs, so is E^{*}
7. If E is an REs, so is (E)

These are all regular expressions.

Key difference: the type of the transition function:

- DFA: $\delta \in Q \times \Sigma \rightarrow Q$
- NFA: $\delta \in Q \times \Sigma \rightarrow \mathcal{P}(Q)$

Language of an automaton: the set of all words it accepts.

As DFAs and NFAs are interconvertible, these two kinds of automata defines the same class of languages.

Conventions

- The $*$-operator has higher precedence than + and sequencing.
E.g.

$$
\begin{aligned}
\mathbf{a b}^{*} & =\mathbf{a}\left(\mathbf{b}^{*}\right) \\
\mathbf{a}+\mathbf{b}^{*} & =\mathbf{a}+\left(\mathbf{b}^{*}\right)
\end{aligned}
$$

- Sequencing has higher precedence than + . E.g.

$$
\mathrm{ab}+\mathbf{c d}=(\mathbf{a b})+(\mathbf{c d})
$$

