COMP2012/G52LAC Languages and Computation Lecture 8 Introduction to Context-free Grammars

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 8 - p.1/8

Non-regular Languages (3)

But of course, "balanced parentheses" is a key feature of many important classes of languages; e.g.:

- Arithmetic expressions: (,)
- Matching keywords in programming languages: begin, end, repeat, until
- Markup languages; e.g. HTML: , ,
- Q: Can such languages be described formally? How?
- A: Through Context-free Grammars (CFG).

COMP2012/G52LACLanguages and ComputationLecture 8 – p.4/8

GCSESE (2)

Productions for GCSESE:

S	\rightarrow	NP VP	VP	\rightarrow	$V \; Adv$
NP	\rightarrow	Adj NP	VP	\rightarrow	V
NP	\rightarrow	N	V	\rightarrow	walks
N	\rightarrow	boy	V	\rightarrow	runs
N	\rightarrow	girl	Adv	\rightarrow	slowly
Adj	\rightarrow	little	Adv	\rightarrow	fast
Adj	\rightarrow	big			

Note: The terminals constitute the *alphabet* of the language being defined.

COMP2012/G52LACLanguages and ComputationLecture 8 - p.7/8

Non-regular Languages (1)

We have established that the following language is not regular:

 $L = \{0^i 1^i \mid i \in \mathbb{N}\}$

Others? What about *B*: the language of "balanced parentheses"? E.g.

()()	\in	B						
((()))))))	\in	B						
)(∉	B						
(()	∉	В						
• •	0		o COMP201	。 2/G52LAC	Languages	e and Compu	e tationLectur	o e 8 – p.2/8

Context Free Grammars (CFG)

CFGs originated as an attempt to describe grammars for natural languages like English.

Key idea: Rules, called *productions*, that describe how symbols called *nonterminals* (or *variables* or *syntactic categories*) can be replaced by nonterminals and *terminals* until only terminals left.

 $nonterminal \rightarrow terminals$ and nonterminals

Let us consider the language *Grammatically Correct Sentences of Extremely Simplified English* (GCSESE)

Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of nonterminals (or variables or syntactic categories)
- T is a finite set of *terminals*
- $N \cap T = \emptyset$ (disjoint)
- *P* is a finite set of *productions* of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the *start symbol*

Non-regular Languages (2)

Is B regular?

NFA for up to three levels of parentheses:

)))

How many states to recognize B? Is B regular?

Use Pumping Lemma for regular languages to formally prove B not regular. *Exercise!*

COMP2012/G52LACLanguages and ComputationLecture 8 - p.3/8

GCSESE (1)

No	onterminals	Terminals
S:	Sentence	boy
NP:	Noun Phrase	girl
VP:	Verb Phrase	little
N:	Noun	big
V:	Verb	walks
		runs
		slowly
		fast

COMP2012/G52LACLanguages and ComputationLecture 8 – p.8/8