COMP2012/G52LAC Languages and Computation Lecture 9 The Language of a CFG

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 9 - p.1/9

Simple Arithmetic Expressions

$$SAE = (N = \{E, I, D\}, T = \{+, *, (,), 0, 1, ..., 9\}, P, E)$$
 where P is given by:

Note: $A \to \alpha \mid \beta$ shorthand for $A \to \alpha$, $A \to \beta$.

Recap: Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of nonterminals (or variables or syntactic categories)
- T is a finite set of terminals
- $N \cap T = \emptyset$ (disjoint)
- P is a finite set of *productions* of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the *start symbol*

COMP2012/G52LACLanguages and ComputationLecture 9 - p.2/

Another Example: Java

The syntax of programming languages is invariably specified by CFGs.

Example: The Java Language Specification, Third Edition. Section 14.5, page 368 gives a CFG for Java statements.

The Directly Derives Relation (1)

To formally define the language generated by

$$G = (N, T, P, S)$$

we first define a binary relation \Rightarrow on strings over $N \cup T$, read "directly derives in grammar G", being the least relation such that

$$\alpha A \gamma \underset{G}{\Rightarrow} \alpha \beta \gamma$$

whenever $A \to \beta$ is a production in G where $A \in N$ and $\alpha, \beta, \gamma \in (N \cup T)^*$.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.5/9

The Derives Relation (1)

The relation $\underset{G}{\overset{*}{\Rightarrow}}$, read "*derives in grammar* G", is the reflexive, transitive closure of $\underset{G}{\overset{*}{\Rightarrow}}$.

That is, $\underset{G}{\overset{*}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

•
$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$
 if $\alpha \Rightarrow \beta$

• $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$ (reflexive)

•
$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$$
 if $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \gamma \wedge \gamma \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ (transitive)

The Directly Derives Relation (2)

When it is clear which grammar G is involved, we use \Rightarrow instead of \Rightarrow .

Example: Given the grammar

$$S \rightarrow \epsilon \mid aA$$

$$A \rightarrow bS$$

we have

$$S \Rightarrow \epsilon$$
 $aA \Rightarrow abS$
 $S \Rightarrow aA$ $SaAaa \Rightarrow SabSaa$

The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\stackrel{*}{\Rightarrow}$ when G is obvious.

Example: Given the grammar

$$S \rightarrow \epsilon \mid aA$$
$$A \rightarrow bS$$

we have

Lang. Generated by a Grammar

The *language generated* by a context-free grammar

$$G = (N, T, P, S)$$

denoted L(G), is defined as follows:

$$L(G) = \{ w \mid w \in T^* \ \land \ S \underset{G}{\overset{*}{\Rightarrow}} \ w \}$$

A language L is a *Context-Free Language* (CFL) iff L = L(G) for some CFG G.

A string $\alpha \in (N \cup T)^*$ is a *sentential form* iff $S \stackrel{*}{\Rightarrow} \alpha$.

COMP2012/G52LACLanguages and ComputationLecture 9 – p.9/9