COMP2012/G52LAC Languages and Computation Lecture 10 Derivation Trees and Ambiguity

Henrik Nilsson

University of Nottingham

Recap: Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of nonterminals (or variables or syntactic categories)
- T is a finite set of *terminals*
- $N \cap T = \emptyset$ (disjoint)
- *P* is a finite set of *productions* of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the *start symbol*

Recap: The Directly Derives Relation (1)

COMP2012/G52LACL anguages and ComputationLecture 10 - p.1/10

COMP2012/G52LACLanguages and ComputationLecture 10 - p.3/10

To formally define the language generated by

$$G = (N, T, P, S)$$

we first define a binary relation \Rightarrow on strings over

 $N \cup T$, read "*directly derives in grammar* G", being the least relation such that

$$\alpha A\gamma \underset{G}{\Rightarrow} \alpha \beta \gamma$$

whenever $A \to \beta$ is a production in G where $A \in N$ and $\alpha, \beta, \gamma \in (N \cup T)^*$.

Recap: The Directly Derives Relation (2)

When it is clear which grammar *G* is involved, we use \Rightarrow instead of \Rightarrow_{G} .

Example: Given the grammar

$$\begin{array}{rcl} S & \rightarrow & \epsilon \mid aA \\ A & \rightarrow & bS \end{array}$$

we have

COMP2012/G52LACLanguages and ComputationLecture 10 – p.4/10

COMP2012/G52LACL anguages and ComputationLecture 10 - p.2/10

Recap: The Derives Relation (1)

The relation $\stackrel{*}{\underset{G}{\rightarrow}}$, read "*derives in grammar G*", is the reflexive, transitive closure of \Rightarrow_{G} . That is, $\stackrel{*}{\underset{G}{\rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

• $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \beta$ if $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \beta$ • $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \alpha$ (reflexive) • $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \beta$ if $\alpha \stackrel{*}{\underset{G}{\rightarrow}} \gamma \wedge \gamma \stackrel{*}{\underset{G}{\rightarrow}} \beta$ (transitive) COMP2012/G52LACLanguages and ComputationLecture 10 - p.5/10

Recap: Lang. Generated by a Grammar

The *language generated* by a context-free grammar

G = (N, T, P, S)

denoted L(G), is defined as follows:

$$L(G) = \{ w \mid w \in T^* \land S \stackrel{*}{\Rightarrow}_{G} w \}$$

A language L is a *Context-Free Language* (CFL) iff L = L(G) for some CFG G.

A string $\alpha \in (N \cup T)^*$ is a *sentential form* iff $S \stackrel{*}{\Rightarrow} \alpha$.

COMP2012/G52LACLanguages and ComputationLecture 10 - p.7/10

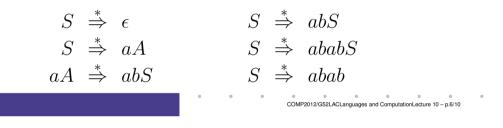
Recap: The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\stackrel{*}{\stackrel{*}{\Rightarrow}}$ when *G* is obvious.

Example: Given the grammar

 $\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$

we have



Simple Arithmetic Expressions

 $SAE = (N = \{E, I, D\}, T = \{+, *, (,), 0, 1, \dots, 9\}, P, E)$ where P is given by:

$$E \rightarrow E + E$$

$$\mid E * E$$

$$\mid (E)$$

$$\mid I$$

$$I \rightarrow DI \mid D$$

$$D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Note: $A \to \alpha \mid \beta$ shorthand for $A \to \alpha$, $A \to \beta$.

Derivation Trees (1)

A tree is a *derivation tree* for a CFG G = (N, T, P, S) iff

- 1. Every node has a label from $N \cup T \cup \{\epsilon\}$.
- 2. The label of the root node is S.
- 3. Labels of interior nodes belong to N.
- 4. If a node *n* has label *A* and nodes n_1, n_2, \ldots, n_k are children of *n*, from left to right, with labels $X_1, X_2, \ldots X_k$, respectively, then $A \to X_1 X_2 \ldots X_k$ is a production in *P*.

COMP2012/G52LACLanguages and ComputationLecture 10 - p.9/10

5. If a node n has label ϵ , then n is a leaf and the only child of its parent.

Derivation Trees (2)

- The string of *leaf labels* read from left to right, eliding any *ε*, constitute the *yield* of the tree.
- For a CFG G = (N, T, P, S), a string $\alpha \in (N \cup T)^*$ is the yield of some derivation tree iff $S \stackrel{*}{\Rightarrow} \alpha$.

COMP2012/G52LACL anguages and ComputationLecture 10 - p.10/10