COMP2012/G52LAC Languages and Computation Lecture 10 **Derivation Trees and Ambiguity**

Henrik Nilsson

University of Nottingham

Recap: Definition of CFG

A CFG G = (N, T, P, S) where

- N is a finite set of *nonterminals* (or variables or syntactic categories)
- T is a finite set of terminals
- $N \cap T = \emptyset$ (disjoint)
- P is a finite set of productions of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- $S \in N$ is the start symbol

Recap: The Directly Derives Relation (2)

When it is clear which grammar G is involved, we use \Rightarrow instead of \Rightarrow .

Example: Given the grammar

$$\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

OMP2012/G52LACLanguages and ComputationLecture 10 - p.4/10

COMP2012/G52LACLanguages and ComputationLecture 10 - p.1/10

Recap: Lang. Generated by a Grammar

The language generated by a context-free grammar

G = (N, T, P, S)

denoted L(G), is defined as follows:

$$L(G) = \{ w \mid w \in T^* \land S \stackrel{*}{\underset{G}{\Rightarrow}} w \}$$

A language L is a Context-Free Language (CFL) iff L = L(G) for some CFG G.

A string $\alpha \in (N \cup T)^*$ is a *sentential form* iff $S \stackrel{*}{\Rightarrow} \alpha$.

OMP2012/G52LACLanguages and ComputationLecture 10 - p.7/10

COMP2012/G52LACLanguages and ComputationLecture 10 - p.2/10

Recap: The Derives Relation (1)

The relation $\stackrel{*}{\Rightarrow}$, read "*derives in grammar* G", is the reflexive, transitive closure of \Rightarrow . That is, $\stackrel{*}{\xrightarrow{}}_{C}$ is the least relation on strings over $N \cup T$ such that: • $\alpha \stackrel{*}{\Rightarrow} \beta$ if $\alpha \Rightarrow \beta$ • $\alpha \stackrel{*}{\Rightarrow} \alpha$ (reflexive) • $\alpha \stackrel{*}{\xrightarrow{\sim}} \beta$ if $\alpha \stackrel{*}{\xrightarrow{\sim}} \gamma \land \gamma \stackrel{*}{\xrightarrow{\sim}} \beta$ (transitive) OMP2012/G52LACLanguages and ComputationLecture 10 - p.R/10

Simple Arithmetic Expressions

 $SAE = (N = \{E, I, D\}, T = \{+, *, (,), 0, 1, \dots, 9\}, P, E)$ where *P* is given by:

> $E \rightarrow E + E$ E * E(E)Ι $I \rightarrow DI \mid D$ $D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

Note: $A \to \alpha \mid \beta$ shorthand for $A \to \alpha, A \to \beta$.

OMP2012/G52LACLanguages and ComputationLecture 10 - p.8/10

Recap: The Directly Derives Relation (1)

To formally define the language generated by

G = (N, T, P, S)

we first define a binary relation \Rightarrow on strings over $N \cup T$, read "directly derives in grammar G", being the least relation such that

$$\alpha A\gamma \Rightarrow \alpha \beta \gamma$$

COMP2012/G52LACLanguages and ComputationLecture 10 - p.3/10

whenever $A \rightarrow \beta$ is a production in G where $A \in N$ and $\alpha, \beta, \gamma \in (N \cup T)^*$.

Recap: The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\stackrel{*}{\Rightarrow}$ when G is obvious.

Example: Given the grammar

$$\begin{array}{rcl} S & \to & \epsilon \mid aA \\ A & \to & bS \end{array}$$

we have

$S \stackrel{*}{\Rightarrow} \epsilon$	$S \stackrel{*}{\Rightarrow} abS$
$S \stackrel{*}{\Rightarrow} aA$	$S \stackrel{*}{\Rightarrow} ababS$
$aA \stackrel{*}{\Rightarrow} abS$	$S \stackrel{*}{\Rightarrow} abab$
	O O COMP2012/G52LACLanguages and ComputationLecture 10 – p.6/

Derivation Trees (1)

A tree is a *derivation tree* for a CFG G = (N, T, P, S) iff

- 1. Every node has a label from $N \cup T \cup \{\epsilon\}$.
- 2. The label of the root node is S.
- 3. Labels of interior nodes belong to N.
- 4. If a node n has label A and nodes n_1, n_2, \ldots, n_k are children of n, from left to right, with labels X_1, X_2, \ldots, X_k , respectively, then $A \to X_1 X_2 \ldots X_k$ is a production in *P*.
- 5. If a node n has label ϵ , then n is a leaf and the only child of its parent.

COMP2012/G52LACLanguages and ComputationLecture 10 - p.9/10

Derivation Trees (2)

- The string of *leaf labels* read from left to right, eliding any *ε*, constitute the *yield* of the tree.
- For a CFG G = (N, T, P, S), a string $\alpha \in (N \cup T)^*$ is the yield of some derivation tree iff $S \stackrel{*}{\Rightarrow}_{G} \alpha$.

COMP2012/GS2LACLanguages and ComputationLecture 10 - p.10/10