COMP2012/G52LAC Languages and Computation Lecture 10
 Derivation Trees and Ambiguity

Henrik Nilsson

University of Nottingham

Recap: Definition of CFG

A CFG $G=(N, T, P, S)$ where

- N is a finite set of nonterminals (or variables or syntactic categories)
- T is a finite set of terminals
- $N \cap T=\emptyset$ (disjoint)
- P is a finite set of productions of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in(N \cup T)^{*}$
- $S \in N$ is the start symbol

Recap: The Directly Derives Relation (1)

To formally define the language generated by

$$
G=(N, T, P, S)
$$

we first define a binary relation $\underset{G}{\Rightarrow}$ on strings over $N \cup T$, read "directly derives in grammar G", being the least relation such that

$$
\alpha A \gamma \underset{G}{\Rightarrow} \alpha \beta \gamma
$$

whenever $A \rightarrow \beta$ is a production in G where $A \in N$ and $\alpha, \beta, \gamma \in(N \cup T)^{*}$.

Recap: The Directly Derives Relation (2)

When it is clear which grammar G is involved, we use \Rightarrow instead of $\underset{G}{\Rightarrow}$.

Example: Given the grammar

$$
\begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

we have

$$
\begin{array}{rlrl}
S & \Rightarrow \epsilon & a A & \Rightarrow a b S \\
S & \Rightarrow a A & S a A a a & \Rightarrow S a b S a a
\end{array}
$$

Recap: The Derives Relation (1)

The relation $\underset{G}{\stackrel{*}{\vec{G}}}$, read "derives in grammar G ", is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.
That is, $\underset{G}{\stackrel{*}{\leftrightarrows}}$ is the least relation on strings over $N \cup T$ such that:

Recap: The Derives Relation (1)

The relation $\underset{G}{\stackrel{*}{\vec{G}}}$, read "derives in grammar G ", is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.
That is, $\underset{G}{\stackrel{*}{\rightrightarrows}}$ is the least relation on strings over $N \cup T$ such that:

- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \beta$ if $\alpha \underset{G}{\Rightarrow} \beta$

Recap: The Derives Relation (1)

The relation $\underset{G}{\stackrel{*}{\rightarrow}}$, read "derives in grammar $G^{\prime \prime}$, is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.
That is, $\underset{G}{\stackrel{*}{\rightrightarrows}}$ is the least relation on strings over $N \cup T$ such that:

- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \beta$ if $\alpha \underset{G}{\Rightarrow} \beta$
- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$
(reflexive)

Recap: The Derives Relation (1)

The relation $\underset{G}{\stackrel{*}{7}}$, read "derives in grammar $G^{\prime \prime}$, is the reflexive, transitive closure of $\underset{G}{\Rightarrow}$.
That is, $\underset{G}{\stackrel{*}{\Rightarrow}}$ is the least relation on strings over $N \cup T$ such that:

- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \beta$ if $\alpha \underset{G}{\Rightarrow} \beta$
- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$
(reflexive)
- $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \beta$ if $\alpha \underset{G}{\stackrel{*}{\Rightarrow}} \gamma \wedge \gamma \underset{G}{\stackrel{*}{\Rightarrow}} \beta$
(transitive)

Recap: The Derives Relation (2)

Again, we use $\stackrel{*}{\Rightarrow}$ instead of $\underset{G}{\stackrel{*}{\Rightarrow}}$ when G is obvious.
Example: Given the grammar

$$
\begin{aligned}
& S \rightarrow \epsilon \mid a A \\
& A \rightarrow b S
\end{aligned}
$$

we have

$$
\begin{array}{rll}
S & \stackrel{*}{\Rightarrow} \epsilon & S \stackrel{*}{\Rightarrow} a b S \\
S & \stackrel{*}{\Rightarrow} a A & S \stackrel{*}{\Rightarrow} a b a b S \\
a A & \stackrel{*}{\Rightarrow} a b S & S \stackrel{*}{\Rightarrow} a b a b
\end{array}
$$

Recap: Lang. Generated by a Grammar

The language generated by a context-free grammar

$$
G=(N, T, P, S)
$$

denoted $L(G)$, is defined as follows:

$$
L(G)=\left\{w \mid w \in T^{*} \wedge S \underset{G}{\stackrel{*}{\Rightarrow}} w\right\}
$$

A language L is a Context-Free Language (CFL) iff $L=L(G)$ for some CFG G.

A string $\alpha \in(N \cup T)^{*}$ is a sentential form iff $S \stackrel{*}{\Rightarrow} \alpha$.

Simple Arithmetic Expressions

$S A E=(N=\{E, I, D\}, T=\{+, *,(), 0,1,, \ldots, 9\}, P, E)$ where P is given by:

$$
\begin{aligned}
& E \rightarrow E+E \\
& \mid E * E \\
&(E) \\
& \mid \\
& I \\
& I \rightarrow D I \mid D \\
& D \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Note: $A \rightarrow \alpha \mid \beta$ shorthand for $A \rightarrow \alpha, A \rightarrow \beta$.

Derivation Trees (1)

A tree is a derivation tree for a CFG
$G=(N, T, P, S)$ iff

1. Every node has a label from $N \cup T \cup\{\epsilon\}$.
2. The label of the root node is S.
3. Labels of interior nodes belong to N.
4. If a node n has label A and nodes $n_{1}, n_{2}, \ldots, n_{k}$ are children of n, from left to right, with labels $X_{1}, X_{2}, \ldots X_{k}$, respectively, then $A \rightarrow X_{1} X_{2} \ldots X_{k}$ is a production in P.
5. If a node n has label ϵ, then n is a leaf and the only child of its parent.

Derivation Trees (2)

- The string of leaf labels read from left to right, eliding any ϵ, constitute the yield of the tree.
- For a CFG $G=(N, T, P, S)$, a string $\alpha \in(N \cup T)^{*}$ is the yield of some derivation tree iff $S \underset{G}{\vec{G}} \alpha$.

