
COMP2012/G52LAC

Languages and Computation
Lecture 12

Recursive-Descent Parsing: Introduction

Henrik Nilsson

University of Nottingham, UK

COMP2012/G52LACLanguages and ComputationLecture 12 – p.1/25

This Lecture

• What is Parsing?

• Recursive-Descent Parsing Fundamentals

• Handling Choice

COMP2012/G52LACLanguages and ComputationLecture 12 – p.2/25

What is Parsing? (1)

• According to Merriam-Webster OnLine
(www.webster.com), parse means:

to resolve (as a sentence) into component
parts of speech and describe them
grammatically

• In CS, we take this to mean answering

w ∈ L(G)?

for a CFG G by analysing the structure of w
according to G; i.e. to recognize the
language generated by a grammar G.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.3/25

What is Parsing? (2)

• A parser is a program that carries out
parsing; i.e., essentially (for CFGs) a
realization of a Pushdown Automaton (PDA).

• For most practical applications, a parser will
also return a structured representation of a
word w ∈ L(G): its derivation or parse tree
(although usually a simplified version, an
Abstract Syntax Tree).

COMP2012/G52LACLanguages and ComputationLecture 12 – p.4/25



Parsing Strategies

There are two basic strategies for parsing:
top-down and bottom up.

• A top-down parser attempts to carry out a
derivation matching the input starting from the
start symbol; i.e., it constructs the parse tree
for the input from the root downwards in
preorder.

• A bottom-up parser tries to construct the
parse tree from the leaves upwards by
using the productions “backwards”.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.5/25

Recursive-Descent Parsing (1)

Recursive-descent parsing is a way to
implement top-down parsing.

We are just going to focus on the language
recognition problem:

w ∈ L(G)?

This suggests the following type for the parser:

parser :: [Token] -> Bool

Token is “compiler speak” for (input) symbol.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.6/25

Recursive-Descent Parsing (2)

Consider a typical production in some grammar G:

S → AB

Let L(X) be the language {w ∈ T ∗ | X
∗
⇒
G

w}, X ∈ N .

Note that

w ∈ L(S) ⇐ ∃w1, w2 . w = w1w2

∧ w1 ∈ L(A)

∧ w2 ∈ L(B)

I.e., given a parser for L(A) and a parser for L(B),

we can construct a parser for L(S).
COMP2012/G52LACLanguages and ComputationLecture 12 – p.7/25

Recursive-Descent Parsing (3)

But we need a way to divide the input word w!

Idea!

Each parser

• tries to derive a prefix of the input according
to the productions for the nonterminal

• returns the remaining suffix if successful.

New type:

parseX :: [Token] -> Maybe [Token]

(Recall: data Maybe a = Nothing | Just a)

COMP2012/G52LACLanguages and ComputationLecture 12 – p.8/25



Recursive-Descent Parsing (4)

Of course, we should be a little suspicious:

• There could be more than one prefix
derivable from a non-terminal.

• How can we then know which one to pick?
Picking the wrong prefix might make it
impossible to derive the suffix from the
following non-terminal.

We will return to these points later.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.9/25

Recursive-Descent Parsing (5)

Now we can construct a parser for L(S)

S → AB

in terms of parsers for L(A) and L(B):

parseS :: [Token] -> Maybe [Token]

parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ ->

case parseB ts’ of

Nothing -> Nothing

Just ts’’ -> Just ts’’

COMP2012/G52LACLanguages and ComputationLecture 12 – p.10/25

Recursive-Descent Parsing (6)

Or we can simplify to just

parseS :: [Token] -> Maybe [Token]

parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ -> parseB ts’

This is called recursive-descent parsing because
the parse functions (usually) end up being
(mutually) recursive.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.11/25

Exercise

Suppose type Token = Char and

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = Just ts

parseA _ = Nothing

parseB :: [Token] -> Maybe [Token]

parseB (’b’ : ts) = Just ts

parseB _ = Nothing

• Evaluate parseA, parseB, and parseS on
“abcd”. (“abcd” = a:(b:(c:(d:[]))))

• What are the productions for A and B?
COMP2012/G52LACLanguages and ComputationLecture 12 – p.12/25



Recursive-Descent Parsers and PDAs

• Fundamental to the implementation of a
recursive computation is a stack that

- keeps track of the state of the computation

- allows for subcomputations (to any
depth).

• In a language that supports recursive functions
and procedures, the stack isn’t explicitly visible.
But internally, it is the central datastructure.

• Thus, a recursive-descent parser is a kind of
Pushdown Automaton (PDA); i.e., an NFA
with an additional stack.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.13/25

Recursive-Descent Parsing (6)

We also need a way to handle choice, as in

S → AB | CD

We are first going to consider the case when the
choice is obvious, as in

S → aB | cD

I.e. we assume it is manifest from the grammar
that we can choose between productions with a
one-symbol lookahead.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.14/25

A Simple Recursive-Descent Parser (1)

Consider:

S → aA | bBA

A → aA | ǫ

B → bB | ǫ

We are going to need one parsing function for
each non-terminal:

• parseS :: [Token] -> Maybe [Token]

• parseA :: [Token] -> Maybe [Token]

• parseB :: [Token] -> Maybe [Token]

COMP2012/G52LACLanguages and ComputationLecture 12 – p.15/25

A Simple Recursive-Descent Parser (2)

Productions for S: S → aA | bBA

type Token = Char

parseS :: [Token] -> Maybe [Token]

parseS (’a’ : ts) =

parseA ts

parseS (’b’ : ts) =

case parseB ts of

Nothing -> Nothing

Just ts’ -> parseA ts’

parseS = Nothing

COMP2012/G52LACLanguages and ComputationLecture 12 – p.16/25



A Simple Recursive-Descent Parser (3)

Productions for A: A → aA | ǫ

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

Productions for B: B → bB | ǫ

parseB :: [Token] -> Maybe [Token]

parseB (’b’ : ts) = parseB ts

parseB ts = Just ts

Note: Since A ⇒ ǫ and B ⇒ ǫ, it is not a syntax
error if the next token is not, respectively, a and b.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.17/25

Choice (1)

Now consider:

S → aA | aBA

A → aA | ǫ

B → bB | ǫ

In parseS, should parseA or parseB be called
once a has been read?

COMP2012/G52LACLanguages and ComputationLecture 12 – p.18/25

Choice (2)

We could try the alternatives in order; i.e., a
limited form of backtracking:

Production: S → aA | aBA

parseS (’a’ : ts) =

case parseA ts of

Just ts’ -> Just ts’

Nothing ->

case parseB ts of

Nothing -> Nothing

Just ts’ -> parseA ts’

COMP2012/G52LACLanguages and ComputationLecture 12 – p.19/25

Choice (3)

Similarly, to handle ǫ-productions (as we already did):

Production: A → aA | ǫ

parseA :: [Token] -> Maybe [Token]

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

If the present input starts with an a, consume it
and continue. Only if this fails will the always
successful ǫ-rule be used! (The opposite order
would be less useful as prefixes starting with a

would never be considered.)

COMP2012/G52LACLanguages and ComputationLecture 12 – p.20/25



Choice (4)

Limited backtracking is not an exhaustive
search: liable to get stuck in “blind alleys”.

Consider:

S → AB

A → aA | ǫ

B → ab

COMP2012/G52LACLanguages and ComputationLecture 12 – p.21/25

Choice (5)

Parsing functions:

parseA (’a’ : ts) = parseA ts

parseA ts = Just ts

parseB (’a’ : ’b’ : ts) = Just ts

parseB ts = Nothing

parseS ts =

case parseA ts of

Nothing -> Nothing

Just ts’ -> parseB ts’

COMP2012/G52LACLanguages and ComputationLecture 12 – p.22/25

Choice (6)

Will it work? Consider parsing ab. Clearly
derivable from the grammar! But:

parseS "ab" = Nothing

Why? Because

parseA "ab" = Just "b"

I.e., committed to the choice A → a, and will
never try A → ǫ: a “blind alley”.

This is an instance of the problem of picking the
wrong prefix. Changing order may solve this, but
will cause other problems.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.23/25

Choice (7)

One principled approach is to try all alternatives;
i.e., full backtracking (aka list of successes):

• Each parsing function returns a list of all
possible suffixes. Type:

parseX :: [Token] -> [[Token]]

• Translate A → α | β into

parseA ts = parseAlpha ts ++ parseBeta ts

• An empty list indicates no possible parsing.

COMP2012/G52LACLanguages and ComputationLecture 12 – p.24/25



Choice (8)

However:

• backtracking is computationally expensive

• issues with error reporting: where exactly lies
the problem if it only after an exhaustive
search becomes apparent that there is no
possible way to parse a word?

We are going to look at another principled
approach that avoids backtracking: predictive
parsing. (But the grammar must satisfy certain
conditions.)

COMP2012/G52LACLanguages and ComputationLecture 12 – p.25/25


	This Lecture
	What is Parsing? (1)
	What is Parsing? (2)
	Parsing Strategies
	Recursive-Descent Parsing (1)
	Recursive-Descent Parsing (2)
	Recursive-Descent Parsing (3)
	Recursive-Descent Parsing (4)
	Recursive-Descent Parsing (5)
	Recursive-Descent Parsing (6)
	Exercise
	Recursive-Descent Parsers and PDAs
	Recursive-Descent Parsing (6)
	A Simple Recursive-Descent Parser (1)
	A Simple Recursive-Descent Parser (2)
	A Simple Recursive-Descent Parser (3)
	Choice (1)
	Choice (2)
	Choice (3)
	Choice (4)
	Choice (5)
	Choice (6)
	Choice (7)
	Choice (8)

