
COMP2012/G52LAC

Languages and Computation
Lecture 13

Recursive-Descent Parsing:
Elimination of Left Recursion

Henrik Nilsson

University of Nottingham, UK

COMP2012/G52LACLanguages and ComputationLecture 13 – p.1/18

This Lecture

• The problem of recursive-descent parsing
and left recursive grammars.

• Elimination of left recursion.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.2/18

Left Recursion

Consider: A → Aa | ǫ

Parsing function:

parseA :: [Token] -> Maybe [Token]

parseA ts =

case parseA ts of

Just (’a’ : ts’) -> Just ts’

_ -> Just ts

Any problem?

Would loop! Recursive-descent parsers cannot
(easily) deal with left-recursive grammars.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.3/18

Elimination of Left Recursion (1)

• A grammar is left-recursive if there is some

non-terminal A such that A
+
⇒ Aα.

• Certain parsing methods cannot handle
left-recursive grammars.

• If we want to use such a parsing method for
parsing a language L = L(G) given by a
left-recursive grammar G, then the grammar
first has to be transformed into an equivalent
grammar G′ that is not left-recursive.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.4/18



Recap: Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

(The equivalence of CFGs is in general
undecidable.)

COMP2012/G52LACLanguages and ComputationLecture 13 – p.5/18

Elimination of Left Recursion (2)

• We will first consider immediate left
recursion; i.e., productions of the form

A → Aα

We will further assume that α cannot derive ǫ.

• Key idea: A → β | Aα and A → β(α)∗ are
equivalent.

• The latter can be expressed as:

A → βA′

A′ → αA′ | ǫ

where A′ is a new nonterminal (name arbitrary).

COMP2012/G52LACLanguages and ComputationLecture 13 – p.6/18

Exercise

• The following grammar G1 is immediately
left-recursive:

A → b | Aa

Draw the derivation tree for baa using G1.

• The following is a non-left-recursive grammar
G′

1 equivalent to G1:

A → bA′

A′ → aA′ | ǫ

Draw the derivation tree for baa using G′
1.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.7/18

Elimination of Left Recursion (3)

For each nonterminal A defined by some left-
recursive production, group the productions for A

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn

such that no βi begins with an A.

Then replace the A productions by

A → β1A
′ | β2A

′ | . . . | βnA
′

A′ → α1A
′ | α2A

′ | . . . | αmA
′ | ǫ

Assumption: no αi derives ǫ.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.8/18



Elimination of Left Recursion (4)

Consider the (immediately) left-recursive grammar:

S → A | B

A → ABc | AAdd | a | aa

B → Bee | b

Terminal strings derivable from B include:

b, bee, beeee, beeeeee

Terminal strings derivable from A include:

a, aa, aadd, aaadd, aaadddd, abc, aabc,
abeec, aabeec, abeecbeec, aabeeeecddbeec

COMP2012/G52LACLanguages and ComputationLecture 13 – p.9/18

Elimination of Left Recursion (5)

Let us do a leftmost derivation of aabeeeecddbeec:

S ⇒ A

⇒ ABc

⇒ AAddBc

⇒ aAddBc

⇒ aABcddBc

⇒ aaBcddBc

⇒ aaBeecddBc

⇒ aaBeeeecddBc

⇒ aabeeeecddBc

⇒ aabeeeecddBeec

⇒ aabeeeecddbeec

COMP2012/G52LACLanguages and ComputationLecture 13 – p.10/18

Elimination of Left Recursion (6)

Here is the grammar again:

S → A | B

A → ABc | AAdd | a | aa

B → Bee | b

An equivalent right-recursive grammar:

S → A | B

A → aA′ | aaA′

A′ → BcA′ | AddA′ | ǫ

B → bB′

B′ → eeB′ | ǫ

COMP2012/G52LACLanguages and ComputationLecture 13 – p.11/18

Elimination of Left Recursion (7)

Derivation of aabeeeecddbeec in the new grammar:

S ⇒ A ⇒ aA′ ⇒ aAddA′ ⇒ aaA′ddA′

⇒ aaBcA′ddA′

⇒ aabB′cA′ddA′

⇒ aabeeB′cA′ddA′

⇒ aabeeeeB′cA′ddA′

⇒ aabeeeecA′ddA′

⇒ aabeeeecddA′

⇒ aabeeeecddBcA′

⇒ aabeeeecddbB′cA′

⇒ aabeeeecddbeeB′cA′

⇒ aabeeeecddbeecA′ ⇒ aabeeeecddbeec
COMP2012/G52LACLanguages and ComputationLecture 13 – p.12/18



General Left Recursion (1)

To eliminate general left recursion:

• first transform the grammar into an
immediately left-recursive grammar through
systematic substitution

• then proceed as before.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.13/18

Substitution

• An occurrence of a non-terminal in a
right-hand side may be replaced by the
right-hand sides of the productions for that
non-terminal if done in all possible ways.

• All productions for non-terminals that, as a
result, cannot be reached from the start
symbol, can be eliminated.

(See e.g. the Typeset Lecture Notes section 8.3,
or Aho, Sethi, and Ullman (1986) for details.)

COMP2012/G52LACLanguages and ComputationLecture 13 – p.14/18

General Left Recursion (2)

For example, the generally left-recursive grammar

A → Ba

B → Ab | Ac | ǫ

is first transformed into the immediately
left-recursive grammar

A → Aba

A → Aca

A → a

COMP2012/G52LACLanguages and ComputationLecture 13 – p.15/18

Exercise

Transform the following generally left-recursive
grammar

A → BaB

B → Cb | ǫ

C → Ab | Ac

into an equivalent immediately left-recursive
grammar.

Then eliminate the left recursion.

COMP2012/G52LACLanguages and ComputationLecture 13 – p.16/18



Solution (1)

First:
A → BaB

B → Abb |Acb | ǫ

Then:
A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Or, eliminating B completely:

A → AbbaAbb | AcbaAbb | aAbb

| AbbaAcb | AcbaAcb | aAcb

| Abba | Acba | a

COMP2012/G52LACLanguages and ComputationLecture 13 – p.17/18

Solution (2)

Let’s go with the smaller version (fewer productions):

A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Only productions for A are immediately left-
recursive. Applying the elimination transformation:

A → aBA′

A′ → bbaBA′ | cbaBA′ | ǫ

B → Abb |Acb | ǫ

Note: A appears to the left in B-productions; yet
grammar no longer left-recursive. Why?

COMP2012/G52LACLanguages and ComputationLecture 13 – p.18/18


	This Lecture
	Left Recursion
	Elimination of Left Recursion (1)
	Recap: Equivalence of Grammars
	Elimination of Left Recursion (2)
	Exercise
	Elimination of Left Recursion (3)
	Elimination of Left Recursion (4)
	Elimination of Left Recursion (5)
	Elimination of Left Recursion (6)
	Elimination of Left Recursion (7)
	General Left Recursion (1)
	Substitution
	General Left Recursion (2)
	Exercise
	Solution (1)
	Solution (2)

