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This Lecture

• The problem of recursive-descent parsing
and left recursive grammars.

• Elimination of left recursion.
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Left Recursion

Consider: A → Aa | ǫ

Parsing function:

parseA :: [Token] -> Maybe [Token]

parseA ts =

case parseA ts of

Just (’a’ : ts’) -> Just ts’

_ -> Just ts

Any problem?

Would loop! Recursive-descent parsers cannot
(easily) deal with left-recursive grammars.
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Elimination of Left Recursion (1)

• A grammar is left-recursive if there is some

non-terminal A such that A
+
⇒ Aα.

• Certain parsing methods cannot handle
left-recursive grammars.

• If we want to use such a parsing method for
parsing a language L = L(G) given by a
left-recursive grammar G, then the grammar
first has to be transformed into an equivalent
grammar G′ that is not left-recursive.
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Recap: Equivalence of Grammars

Two grammars G1 and G2 are equivalent iff
L(G1) = L(G2).

Example:

G1:
S → ǫ | A

A → a | aA
G2:

S → A

A → ǫ | Aa

L(G1) = {a}∗ = L(G2)

(The equivalence of CFGs is in general
undecidable.)
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Elimination of Left Recursion (2)

• We will first consider immediate left
recursion; i.e., productions of the form

A → Aα

We will further assume that α cannot derive ǫ.

• Key idea: A → β | Aα and A → β(α)∗ are
equivalent.

• The latter can be expressed as:

A → βA′

A′ → αA′ | ǫ

where A′ is a new nonterminal (name arbitrary).
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Exercise

• The following grammar G1 is immediately
left-recursive:

A → b | Aa

Draw the derivation tree for baa using G1.

• The following is a non-left-recursive grammar
G′

1 equivalent to G1:

A → bA′

A′ → aA′ | ǫ

Draw the derivation tree for baa using G′
1.
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Elimination of Left Recursion (3)

For each nonterminal A defined by some left-
recursive production, group the productions for A

A → Aα1 | Aα2 | . . . | Aαm | β1 | β2 | . . . | βn

such that no βi begins with an A.

Then replace the A productions by

A → β1A
′ | β2A

′ | . . . | βnA
′

A′ → α1A
′ | α2A

′ | . . . | αmA
′ | ǫ

Assumption: no αi derives ǫ.
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Elimination of Left Recursion (4)

Consider the (immediately) left-recursive grammar:

S → A | B

A → ABc | AAdd | a | aa

B → Bee | b

Terminal strings derivable from B include:

b, bee, beeee, beeeeee

Terminal strings derivable from A include:

a, aa, aadd, aaadd, aaadddd, abc, aabc,
abeec, aabeec, abeecbeec, aabeeeecddbeec
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Elimination of Left Recursion (5)

Let us do a leftmost derivation of aabeeeecddbeec:

S ⇒ A

⇒ ABc

⇒ AAddBc

⇒ aAddBc

⇒ aABcddBc

⇒ aaBcddBc

⇒ aaBeecddBc

⇒ aaBeeeecddBc

⇒ aabeeeecddBc

⇒ aabeeeecddBeec

⇒ aabeeeecddbeec
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Elimination of Left Recursion (6)

Here is the grammar again:

S → A | B

A → ABc | AAdd | a | aa

B → Bee | b

An equivalent right-recursive grammar:

S → A | B

A → aA′ | aaA′

A′ → BcA′ | AddA′ | ǫ

B → bB′

B′ → eeB′ | ǫ
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Elimination of Left Recursion (7)

Derivation of aabeeeecddbeec in the new grammar:

S ⇒ A ⇒ aA′ ⇒ aAddA′ ⇒ aaA′ddA′

⇒ aaBcA′ddA′

⇒ aabB′cA′ddA′

⇒ aabeeB′cA′ddA′

⇒ aabeeeeB′cA′ddA′

⇒ aabeeeecA′ddA′

⇒ aabeeeecddA′

⇒ aabeeeecddBcA′

⇒ aabeeeecddbB′cA′

⇒ aabeeeecddbeeB′cA′

⇒ aabeeeecddbeecA′ ⇒ aabeeeecddbeec
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General Left Recursion (1)

To eliminate general left recursion:

• first transform the grammar into an
immediately left-recursive grammar through
systematic substitution

• then proceed as before.
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Substitution

• An occurrence of a non-terminal in a
right-hand side may be replaced by the
right-hand sides of the productions for that
non-terminal if done in all possible ways.

• All productions for non-terminals that, as a
result, cannot be reached from the start
symbol, can be eliminated.

(See e.g. the Typeset Lecture Notes section 8.3,
or Aho, Sethi, and Ullman (1986) for details.)
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General Left Recursion (2)

For example, the generally left-recursive grammar

A → Ba

B → Ab | Ac | ǫ

is first transformed into the immediately
left-recursive grammar

A → Aba

A → Aca

A → a
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Exercise

Transform the following generally left-recursive
grammar

A → BaB

B → Cb | ǫ

C → Ab | Ac

into an equivalent immediately left-recursive
grammar.

Then eliminate the left recursion.
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Solution (1)

First:
A → BaB

B → Abb |Acb | ǫ

Then:
A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Or, eliminating B completely:

A → AbbaAbb | AcbaAbb | aAbb

| AbbaAcb | AcbaAcb | aAcb

| Abba | Acba | a
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Solution (2)

Let’s go with the smaller version (fewer productions):

A → AbbaB | AcbaB | aB

B → Abb |Acb | ǫ

Only productions for A are immediately left-
recursive. Applying the elimination transformation:

A → aBA′

A′ → bbaBA′ | cbaBA′ | ǫ

B → Abb |Acb | ǫ

Note: A appears to the left in B-productions; yet
grammar no longer left-recursive. Why?
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