
COMP2012/G52LAC

Languages and Computation
Lecture 14

Recursive-Descent Parsing: Predictive Parsing

Henrik Nilsson

University of Nottingham, UK

COMP2012/G52LACLanguages and ComputationLecture 14 – p.1/35

This lecture:

• The problem of choice revisited.

• Predictive Parsing and LL(1) grammars.

• Computation of First and Follow Sets.

• Left factoring

COMP2012/G52LACLanguages and ComputationLecture 14 – p.2/35

Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of
the top-down parsing method:

• One parsing function associated with each
nonterminal; e.g., for nonterminal X, parseX:

parseX :: [Token] -> Maybe [Token]

• A parsing function attempts to derive a prefix
of the current input according to the grammar
starting from the nonterminal.

• Other parsing functions invoked (recursively)
as needed according to the RHS of the
production(s) for the nonterminal.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.3/35

Recap: Recursive-Descent Parsing (2)

• If successful, a parsing function returns the
remainder of the input.

E.g. if input is αβ, X
∗
⇒ α, and parseX could

carry out this derivation, then:

parseX αβ = Just β

• If unsuccessful, a parsing function returns
Nothing.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.4/35

Recap: Handling Choice (1)

Of course, we want a parsing function to be
successful exactly when a prefix of the input can
be derived from the corresponding nonterminal.

This can be achieved by:

• Adopting a suitable parsing strategy, specifically
regarding how to handle choice between two
or more productions for one nonterminal.

• Impose restrictions on the grammar to
ensure success of the chosen parsing
strategy.

In particular, left recursion usually not allowed.
COMP2012/G52LACLanguages and ComputationLecture 14 – p.5/35

Recap: Handling Choice (2)

Two strategies for handling choice, as in

S → AB | CD

• Looking at the next input symbol is
sometimes enough; e.g.:

S → aB | cD

• If not, all alternatives could be explored
through backtracking:

parseX :: [Token] -> [[Token]]

COMP2012/G52LACLanguages and ComputationLecture 14 – p.6/35

Predictive Parsing (1)

Today, we are going to look into exactly when the
next input symbol, a one symbol lookahead, can
be used to make all parsing decisions.

We note that this can be the case even if the
RHSs start with nonterminals:

S → AB | CD

A → a | b

C → c | d

COMP2012/G52LACLanguages and ComputationLecture 14 – p.7/35

Predictive Parsing (2)

• Predictive parsing is an example of
recursive descent parsing where no
backtracking is needed.

• The grammar must be such that the next input
symbol uniquely determines the next production
to use (a grammar restriction).

Productions: X → α | β

parseX (t : ts) =

| t ?? -> parse α

| t ?? -> parse β

| otherwise -> Nothing

COMP2012/G52LACLanguages and ComputationLecture 14 – p.8/35

Predictive Parsing (3)

How to make the choices? Idea:

• Compute the set of terminal symbols that can
start strings derived from each alternative,
the first set.

• If there is a choice between two or more
alternatives, insist that the first sets for those
are disjoint (a grammar restriction).

• The right choice can now be made simply by
determining to which alternative’s first set the
next input symbol belongs.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.9/35

Predictive Parsing (4)

Productions: X → α | β

parseX (t : ts) =

| t ∈ first(α) -> parse α

| t ∈ first(β) -> parse β

| otherwise -> Nothing

COMP2012/G52LACLanguages and ComputationLecture 14 – p.10/35

Predictive Parsing (5)

Again, consider: X → α | β

What if e.g. β
∗
⇒ ǫ?

Clearly, the next input symbol could be a terminal
that can follow a string derivable form X!

parseX (t : ts) =

| t ∈ first(α) -> parse α

| t ∈ first(β) ∪ follow(X) -> parse β

| otherwise -> Nothing

The branches must be mutually exclusive!
COMP2012/G52LACLanguages and ComputationLecture 14 – p.11/35

First and Follow Sets (1)

Following (roughly) “the Dragon Book” [ASU86]

For a CFG G = (N, T, P, S):

first(α) = {a ∈ T | α
∗
⇒
G

aβ}

follow(A) = {a ∈ T | S
∗
⇒
G

αAaβ}

∪ {$ | S
∗
⇒
G

αA}

where we assume α, β ∈ (N ∪ T)∗, A ∈ N , and
where $ is a special “end of input” marker.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.12/35

First and Follow Sets (2)

Consider:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(C) = {c, d}

first(B) = {b}

first(A) = {a}

first(S) = first(ABC)

= [because A
∗
⇒ ǫ and B

∗
⇒ ǫ]

first(A) ∪ first(B) ∪ first(C)

= {a, b, c, d}
COMP2012/G52LACLanguages and ComputationLecture 14 – p.13/35

First and Follow Sets (3)

Same grammar:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Follow sets:

follow(C) = {$}

follow(B) = first(C) = {c, d}

follow(A) = [because B
∗
⇒ ǫ]

first(B) ∪ first(C)

= {b, c, d}
COMP2012/G52LACLanguages and ComputationLecture 14 – p.14/35

LL(1) Grammars (1)

Consider all productions for a nonterminal A in
some grammar:

A → α1 | α2 | . . . | αn

In the parsing function for A, on input symbol t,
we parse according to αi if t ∈ first(αi).

If αi
∗
⇒ ǫ, we should parse according to αi also if

t ∈ follow(A)!

COMP2012/G52LACLanguages and ComputationLecture 14 – p.15/35

LL(1) Grammars (2)

Thus, if:

• first(αi) ∩ first(αj) = ∅ for 1 ≤ i < j ≤ n, and

• if αi
∗
⇒ ǫ for some i, then, for all 1 ≤ j ≤ n, j 6= i,

- αj 6
∗
⇒ ǫ, and

- follow(A) ∩ first(αj) = ∅

then it is always clear what do do!

A grammar satisfying these conditions is said to
be an LL(1) grammar.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.16/35

Nullable Nonterminals (1)

In order to compute the first and follow sets for a
grammar G = (N, T, P, S), we first need to

know all nonterminals A ∈ N such that A
∗
⇒ ǫ;

i.e. the set Nǫ ⊆ N of nullable nonterminals.

Let syms(α) denote the set of symbols in a string
α:

syms ∈ (N ∪ T)∗ → P(N ∪ T)

syms(ǫ) = ∅

syms(Xα) = {X} ∪ syms(α)

COMP2012/G52LACLanguages and ComputationLecture 14 – p.17/35

Nullable Nonterminals (2)

The set Nǫ is the smallest solution to the equation

Nǫ = {A | A → α ∈ P ∧ ∀X ∈ syms(α) . X ∈ Nǫ}

(Note that A ∈ Nǫ if A → ǫ ∈ P because syms(ǫ) = ∅
and ∀X ∈ ∅ is trivially true.)

We can now define a predicate nullable on
strings of grammar symbols:

nullable ∈ (N ∪ T)∗ → Bool

nullable(ǫ) = true

nullable(Xα) = X ∈ Nǫ ∧ nullable(α)

COMP2012/G52LACLanguages and ComputationLecture 14 – p.18/35

Nullable Nonterminals (3)

The equation for Nǫ can be solved iteratively as
follows:

1. Initialize Nǫ to {A | A → ǫ ∈ P}.

2. If there is a production A → α such that
∀X ∈ syms(α) . X ∈ Nǫ, then add A to Nǫ.

3. Repeat step 2 until no further nullable
nonterminals can be found.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.19/35

Nullable Nonterminals (4)

Consider the following grammar:

S → ABC | AB

A → aA | BB

B → b | ǫ

C → c | d

• Because B → ǫ is a production, B ∈ Nǫ.

• Because A → BB is a production and
B ∈ Nǫ, additionally A ∈ Nǫ.

• Because S → AB is a production, and
A,B ∈ Nǫ, additionally S ∈ Nǫ.

• No more production with nullable RHS. The
set of nullable symbols Nǫ = {S,A,B}.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.20/35

Computing First Sets (1)

For a CFG G = (N, T, P, S), the sets first(A) for
A ∈ N are the smallest sets satisfying:

first(A) ⊆ T

first(A) =
⋃

A→α ∈ P

first(α)

COMP2012/G52LACLanguages and ComputationLecture 14 – p.21/35

Computing First Sets (2)

For strings, first is defined as (note the
overloaded notation):

first ∈ (N ∪ T)∗ → P(T)

first(ǫ) = ∅

first(aα) = {a}

first(Aα) = first(A) ∪

{

first(α), if A ∈ Nǫ

∅, if A /∈ Nǫ

where a ∈ T , A ∈ N , and α ∈ (N ∪ T)∗.

COMP2012/G52LACLanguages and ComputationLecture 14 – p.22/35

Computing First Sets (3)

The solutions can often be obtained directly by
expanding out all definitions.

If necessary, the equations can be solved by
iteration in a similar way to how Nǫ is computed.

Note that the smallest solution to set equations
of the type

X = X ∪ Y

when there are no other constraints on X is simply

X = Y
COMP2012/G52LACLanguages and ComputationLecture 14 – p.23/35

Computing First Sets (4)

Consider (again):

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d
First compute the nullable nonterminals:
Nǫ = {A,B}.

Then compute first sets:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅ = {a}

COMP2012/G52LACLanguages and ComputationLecture 14 – p.24/35

Computing First Sets (5)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(B) = first(b) ∪ first(ǫ)

= {b} ∪ ∅ = {b}

first(C) = first(c) ∪ first(d)

= {c} ∪ {d} = {c, d}

COMP2012/G52LACLanguages and ComputationLecture 14 – p.25/35

Computing First Sets (6)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(S) = first(ABC)

= [A ∈ Nǫ]

first(A) ∪ first(BC)

= [B ∈ Nǫ ∧ C /∈ Nǫ]

first(A) ∪ first(B) ∪ first(C) ∪ ∅

= {a} ∪ {b} ∪ {c, d} = {a, b, c, d}

COMP2012/G52LACLanguages and ComputationLecture 14 – p.26/35

Computing Follow Sets (1)

For a CFG G = (N, T, P, S), the sets follow(A)
for A ∈ N are the smallest sets satisfying:

• {$} ⊆ follow(S)

• If A → αBβ ∈ P , then first(β) ⊆ follow(B)

• If A → αBβ ∈ P , and nullable(β) then
follow(A) ⊆ follow(B)

A,B ∈ N , and α, β ∈ (N ∪ T)∗.

(It is assumed that there are no useless symbols;

i.e., all symbols can appear in the derivation of

some sentence.)
COMP2012/G52LACLanguages and ComputationLecture 14 – p.27/35

Computing Follow Sets (2)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Constraints for follow(S):

{$} ⊆ follow(S)

Constraints for follow(A) (note: ¬nullable(BC)):

first(BC) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)
COMP2012/G52LACLanguages and ComputationLecture 14 – p.28/35

Computing Follow Sets (3)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Constraints for follow(B) (note: ¬nullable(C)):

first(C) ⊆ follow(B)

Constraints for follow(C) (note: nullable(ǫ)):

first(ǫ) ⊆ follow(C)

follow(S) ⊆ follow(C)

COMP2012/G52LACLanguages and ComputationLecture 14 – p.29/35

Computing Follow Sets (4)

In general:

X ⊆ Z ∧ Y ⊆ Z ⇐⇒ X ∪ Y ⊆ Z

Also, constraints like ∅ ⊆ X and X ⊆ X are
trivially satisfied and can be omitted.
The constraints can thus be written as:

{$} ⊆ follow(S)

first(BC) ∪ first(ǫ) ⊆ follow(A)

first(C) ⊆ follow(B)

first(ǫ) ∪ follow(S) ⊆ follow(C)

COMP2012/G52LACLanguages and ComputationLecture 14 – p.30/35

Computing Follow Sets (5)

Using

first(ǫ) = ∅

first(C) = {c, d}

first(BC) = first(B) ∪ first(C) ∪ ∅

= {b} ∪ {c, d} = {b, c, d}

the constraints can be simplified further:

{$} ⊆ follow(S)

{b, c, d} ⊆ follow(A)

{c, d} ⊆ follow(B)

follow(S) ⊆ follow(C)
COMP2012/G52LACLanguages and ComputationLecture 14 – p.31/35

Computing Follow Sets (6)

Looking for the smallest sets satisfying these
constraints, we get:

follow(S) = {$}

follow(A) = {b, c, d}

follow(B) = {c, d}

follow(C) = follow(S) = {$}

COMP2012/G52LACLanguages and ComputationLecture 14 – p.32/35

LL(1), Left-Recursion, Ambiguity

No left-recursive or ambiguous grammar can be
LL(1)!

Proof: See the lecture notes.

Thus, left-recursion and any ambiguities first
have to be eliminated (see previous lectures).

COMP2012/G52LACLanguages and ComputationLecture 14 – p.33/35

Left Factoring (1)

Left factoring means factoring out a common
prefix among a group of productions. This can
help making a grammar suitable for predictive
recursive descent parsing.

Example:

S → aXbY | aXbY cZ

Not suitable for predictive parsing!

But note common prefix! Let’s try to postpone the
choice!

COMP2012/G52LACLanguages and ComputationLecture 14 – p.34/35

Left Factoring (2)

Before left factoring:

S → aXbY | aXbY cZ

After left factoring:

S → aXbY S′

S′ → ǫ | cZ

Now suitable for predictive parsing!

COMP2012/G52LACLanguages and ComputationLecture 14 – p.35/35

	This lecture:
	Recap: Recursive-Descent Parsing (1)
	Recap: Recursive-Descent Parsing (2)
	Recap: Handling Choice (1)
	Recap: Handling Choice (2)
	Predictive Parsing (1)
	Predictive Parsing (2)
	Predictive Parsing (3)
	Predictive Parsing (4)
	Predictive Parsing (5)
	First and Follow Sets (1)
	First and Follow Sets (2)
	First and Follow Sets (3)
	mbox {LL(1)}
Grammars (1)
	mbox {LL(1)}
Grammars (2)
	Nullable Nonterminals (1)
	Nullable Nonterminals (2)
	Nullable Nonterminals (3)
	Nullable Nonterminals (4)
	Computing First Sets (1)
	Computing First Sets (2)
	Computing First Sets (3)
	Computing First Sets (4)
	Computing First Sets (5)
	Computing First Sets (6)
	Computing Follow Sets (1)
	Computing Follow Sets (2)
	Computing Follow Sets (3)
	Computing Follow Sets (4)
	Computing Follow Sets (5)
	Computing Follow Sets (6)
	mbox {LL(1)},
Left-Recursion, Ambiguity
	Left Factoring (1)
	Left Factoring (2)

