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This lecture:

• The problem of choice revisited.

• Predictive Parsing and LL(1) grammars.

• Computation of First and Follow Sets.

• Left factoring
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Recap: Recursive-Descent Parsing (1)

Recursive-descent parsing is an example of
the top-down parsing method:

• One parsing function associated with each
nonterminal; e.g., for nonterminal X, parseX:

parseX :: [Token] -> Maybe [Token]

• A parsing function attempts to derive a prefix
of the current input according to the grammar
starting from the nonterminal.

• Other parsing functions invoked (recursively)
as needed according to the RHS of the
production(s) for the nonterminal.
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Recap: Recursive-Descent Parsing (2)

• If successful, a parsing function returns the
remainder of the input.

E.g. if input is αβ, X
∗
⇒ α, and parseX could

carry out this derivation, then:

parseX αβ = Just β

• If unsuccessful, a parsing function returns
Nothing.
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Recap: Handling Choice (1)

Of course, we want a parsing function to be
successful exactly when a prefix of the input can
be derived from the corresponding nonterminal.

This can be achieved by:

• Adopting a suitable parsing strategy, specifically
regarding how to handle choice between two
or more productions for one nonterminal.

• Impose restrictions on the grammar to
ensure success of the chosen parsing
strategy.

In particular, left recursion usually not allowed.
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Recap: Handling Choice (2)

Two strategies for handling choice, as in

S → AB | CD

• Looking at the next input symbol is
sometimes enough; e.g.:

S → aB | cD

• If not, all alternatives could be explored
through backtracking:

parseX :: [Token] -> [[Token]]

COMP2012/G52LACLanguages and ComputationLecture 14 – p.6/35

Predictive Parsing (1)

Today, we are going to look into exactly when the
next input symbol, a one symbol lookahead, can
be used to make all parsing decisions.

We note that this can be the case even if the
RHSs start with nonterminals:

S → AB | CD

A → a | b

C → c | d
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Predictive Parsing (2)

• Predictive parsing is an example of
recursive descent parsing where no
backtracking is needed.

• The grammar must be such that the next input
symbol uniquely determines the next production
to use (a grammar restriction).

Productions: X → α | β

parseX (t : ts) =

| t ?? -> parse α

| t ?? -> parse β

| otherwise -> Nothing
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Predictive Parsing (3)

How to make the choices? Idea:

• Compute the set of terminal symbols that can
start strings derived from each alternative,
the first set.

• If there is a choice between two or more
alternatives, insist that the first sets for those
are disjoint (a grammar restriction).

• The right choice can now be made simply by
determining to which alternative’s first set the
next input symbol belongs.
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Predictive Parsing (4)

Productions: X → α | β

parseX (t : ts) =

| t ∈ first(α) -> parse α

| t ∈ first(β) -> parse β

| otherwise -> Nothing

COMP2012/G52LACLanguages and ComputationLecture 14 – p.10/35

Predictive Parsing (5)

Again, consider: X → α | β

What if e.g. β
∗
⇒ ǫ?

Clearly, the next input symbol could be a terminal
that can follow a string derivable form X!

parseX (t : ts) =

| t ∈ first(α) -> parse α

| t ∈ first(β) ∪ follow(X) -> parse β

| otherwise -> Nothing

The branches must be mutually exclusive!
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First and Follow Sets (1)

Following (roughly) “the Dragon Book” [ASU86]

For a CFG G = (N, T, P, S):

first(α) = {a ∈ T | α
∗
⇒
G

aβ}

follow(A) = {a ∈ T | S
∗
⇒
G

αAaβ}

∪ {$ | S
∗
⇒
G

αA}

where we assume α, β ∈ (N ∪ T )∗, A ∈ N , and
where $ is a special “end of input” marker.
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First and Follow Sets (2)

Consider:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(C) = {c, d}

first(B) = {b}

first(A) = {a}

first(S) = first(ABC)

= [because A
∗
⇒ ǫ and B

∗
⇒ ǫ]

first(A) ∪ first(B) ∪ first(C)

= {a, b, c, d}
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First and Follow Sets (3)

Same grammar:

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Follow sets:

follow(C) = {$}

follow(B) = first(C) = {c, d}

follow(A) = [because B
∗
⇒ ǫ]

first(B) ∪ first(C)

= {b, c, d}
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LL(1) Grammars (1)

Consider all productions for a nonterminal A in
some grammar:

A → α1 | α2 | . . . | αn

In the parsing function for A, on input symbol t,
we parse according to αi if t ∈ first(αi).

If αi
∗
⇒ ǫ, we should parse according to αi also if

t ∈ follow(A)!
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LL(1) Grammars (2)

Thus, if:

• first(αi) ∩ first(αj) = ∅ for 1 ≤ i < j ≤ n, and

• if αi
∗
⇒ ǫ for some i, then, for all 1 ≤ j ≤ n, j 6= i,

- αj 6
∗
⇒ ǫ, and

- follow(A) ∩ first(αj) = ∅

then it is always clear what do do!

A grammar satisfying these conditions is said to
be an LL(1) grammar.
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Nullable Nonterminals (1)

In order to compute the first and follow sets for a
grammar G = (N, T, P, S), we first need to

know all nonterminals A ∈ N such that A
∗
⇒ ǫ;

i.e. the set Nǫ ⊆ N of nullable nonterminals.

Let syms(α) denote the set of symbols in a string
α:

syms ∈ (N ∪ T )∗ → P(N ∪ T )

syms(ǫ) = ∅

syms(Xα) = {X} ∪ syms(α)
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Nullable Nonterminals (2)

The set Nǫ is the smallest solution to the equation

Nǫ = {A | A → α ∈ P ∧ ∀X ∈ syms(α) . X ∈ Nǫ}

(Note that A ∈ Nǫ if A → ǫ ∈ P because syms(ǫ) = ∅
and ∀X ∈ ∅ . . . . is trivially true.)

We can now define a predicate nullable on
strings of grammar symbols:

nullable ∈ (N ∪ T )∗ → Bool

nullable(ǫ) = true

nullable(Xα) = X ∈ Nǫ ∧ nullable(α)
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Nullable Nonterminals (3)

The equation for Nǫ can be solved iteratively as
follows:

1. Initialize Nǫ to {A | A → ǫ ∈ P}.

2. If there is a production A → α such that
∀X ∈ syms(α) . X ∈ Nǫ, then add A to Nǫ.

3. Repeat step 2 until no further nullable
nonterminals can be found.
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Nullable Nonterminals (4)

Consider the following grammar:

S → ABC | AB

A → aA | BB

B → b | ǫ

C → c | d

• Because B → ǫ is a production, B ∈ Nǫ.

• Because A → BB is a production and
B ∈ Nǫ, additionally A ∈ Nǫ.

• Because S → AB is a production, and
A,B ∈ Nǫ, additionally S ∈ Nǫ.

• No more production with nullable RHS. The
set of nullable symbols Nǫ = {S,A,B}.
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Computing First Sets (1)

For a CFG G = (N, T, P, S), the sets first(A) for
A ∈ N are the smallest sets satisfying:

first(A) ⊆ T

first(A) =
⋃

A→α ∈ P

first(α)
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Computing First Sets (2)

For strings, first is defined as (note the
overloaded notation):

first ∈ (N ∪ T )∗ → P(T )

first(ǫ) = ∅

first(aα) = {a}

first(Aα) = first(A) ∪

{

first(α), if A ∈ Nǫ

∅, if A /∈ Nǫ

where a ∈ T , A ∈ N , and α ∈ (N ∪ T )∗.
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Computing First Sets (3)

The solutions can often be obtained directly by
expanding out all definitions.

If necessary, the equations can be solved by
iteration in a similar way to how Nǫ is computed.

Note that the smallest solution to set equations
of the type

X = X ∪ Y

when there are no other constraints on X is simply

X = Y
COMP2012/G52LACLanguages and ComputationLecture 14 – p.23/35

Computing First Sets (4)

Consider (again):

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d
First compute the nullable nonterminals:
Nǫ = {A,B}.

Then compute first sets:

first(A) = first(aA) ∪ first(ǫ)

= {a} ∪ ∅ = {a}
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Computing First Sets (5)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(B) = first(b) ∪ first(ǫ)

= {b} ∪ ∅ = {b}

first(C) = first(c) ∪ first(d)

= {c} ∪ {d} = {c, d}
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Computing First Sets (6)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

first(S) = first(ABC)

= [A ∈ Nǫ]

first(A) ∪ first(BC)

= [B ∈ Nǫ ∧ C /∈ Nǫ]

first(A) ∪ first(B) ∪ first(C) ∪ ∅

= {a} ∪ {b} ∪ {c, d} = {a, b, c, d}
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Computing Follow Sets (1)

For a CFG G = (N, T, P, S), the sets follow(A)
for A ∈ N are the smallest sets satisfying:

• {$} ⊆ follow(S)

• If A → αBβ ∈ P , then first(β) ⊆ follow(B)

• If A → αBβ ∈ P , and nullable(β) then
follow(A) ⊆ follow(B)

A,B ∈ N , and α, β ∈ (N ∪ T )∗.

(It is assumed that there are no useless symbols;

i.e., all symbols can appear in the derivation of

some sentence.)
COMP2012/G52LACLanguages and ComputationLecture 14 – p.27/35



Computing Follow Sets (2)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Constraints for follow(S):

{$} ⊆ follow(S)

Constraints for follow(A) (note: ¬nullable(BC)):

first(BC) ⊆ follow(A)

first(ǫ) ⊆ follow(A)

follow(A) ⊆ follow(A)
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Computing Follow Sets (3)

S → ABC

A → aA | ǫ

B → b | ǫ

C → c | d

Constraints for follow(B) (note: ¬nullable(C)):

first(C) ⊆ follow(B)

Constraints for follow(C) (note: nullable(ǫ)):

first(ǫ) ⊆ follow(C)

follow(S) ⊆ follow(C)
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Computing Follow Sets (4)

In general:

X ⊆ Z ∧ Y ⊆ Z ⇐⇒ X ∪ Y ⊆ Z

Also, constraints like ∅ ⊆ X and X ⊆ X are
trivially satisfied and can be omitted.
The constraints can thus be written as:

{$} ⊆ follow(S)

first(BC) ∪ first(ǫ) ⊆ follow(A)

first(C) ⊆ follow(B)

first(ǫ) ∪ follow(S) ⊆ follow(C)
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Computing Follow Sets (5)

Using

first(ǫ) = ∅

first(C) = {c, d}

first(BC) = first(B) ∪ first(C) ∪ ∅

= {b} ∪ {c, d} = {b, c, d}

the constraints can be simplified further:

{$} ⊆ follow(S)

{b, c, d} ⊆ follow(A)

{c, d} ⊆ follow(B)

follow(S) ⊆ follow(C)
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Computing Follow Sets (6)

Looking for the smallest sets satisfying these
constraints, we get:

follow(S) = {$}

follow(A) = {b, c, d}

follow(B) = {c, d}

follow(C) = follow(S) = {$}
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LL(1), Left-Recursion, Ambiguity

No left-recursive or ambiguous grammar can be
LL(1)!

Proof: See the lecture notes.

Thus, left-recursion and any ambiguities first
have to be eliminated (see previous lectures).
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Left Factoring (1)

Left factoring means factoring out a common
prefix among a group of productions. This can
help making a grammar suitable for predictive
recursive descent parsing.

Example:

S → aXbY | aXbY cZ

Not suitable for predictive parsing!

But note common prefix! Let’s try to postpone the
choice!
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Left Factoring (2)

Before left factoring:

S → aXbY | aXbY cZ

After left factoring:

S → aXbY S′

S′ → ǫ | cZ

Now suitable for predictive parsing!
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