Turing Machines (1)

» A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

« A TM is a generalisation of a PDA: TM = FA +
infinite tape

» Mainly used to study the
what (exactly!) can computers do (given suffi-
cient time and memory) and what can they

Henrik Nilsson

not do.
University of Nottingham . .
» There are other notions of computation, e.g.
the introduced by Alonzo Church
(G54FOP)).

COMP2012/G52LACLanguages and ComputationLecture 15 —p.2/11

o)
9]
H
3
N
=4
»
©
&
2
5
3
2
b
2
3
e
5
E
°

Turing Machines (2) Turing Machines (3)

« All suggested notions of computation have so
far proved to be equivalent.

. : “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

« At first, given how simple TMs are, it may
seem surprising they can do much at all. E.g.
B | Bgx 1y |z |ZB how can they even add or multiply?

- We will see that a TM at least is more
expressive than a PDA.

LACLanguages and ComputationLecture 15 —p.3/11 _ COMP2012/G52LACLanguages and ComputationLecture 15 —p.4/11

Finite Control

movable read/write head

input

Definition of a Turing Machine

ATM M =

* () is a finite set of states

Y is the input alphabet

- I is the tape alphabet, > C T (finite)
cde@xT — {stopfu@ xI' x {L,R} is the

transition function
* qo € @ is the initial state

« Bisthe blank symbol, BeT', B ¢ X
« F C @ are the accepting (final) states

The Next State Relation (1)

The next state relation on ID:

l_

=

Read

“TM M moves in one step from id; to id>.”

CID x ID

idy 1= id
M

COMP201

(Q7 27 F7 57 q0, B, F) Where

2/G52L/

ACLanguages and ComputationLecture 15 —p.5/11

Instantaneous Description (ID)

Instantaneous Descriptions (ID) describe the
of a TM computation:

ID=T"xQxT*
(vz.¢,7vr) € ID means:

« TMis in state ¢
* 7z is the non-blank part of the tape to the

of the head.
 ~vg Is the non-blank part of the tape to the
of the head, the current
position.

Letq,¢ € Q, x,y,z €T, yp,yg € T

1. (g ovr) & (vey, ¢ ve) - if 0(g,2) = (9, R)
2. (117, q,:v'm) E (v, ¢ zyyr) 1 0(g,2) = (dsy, L)
3. (6¢,2r) E (6 ¢,Byyr) if 0(¢,x) =(q,y.L)
4. (,q,¢) b (%y,q) if 9(¢,B) =(d,y, R)
5. (’sz,q,e) (v, 45 2y) if 6(¢,B) =(d,y, L)
6. (6,¢.¢) b (6 ¢, By) if 6(¢, B) =(d,y, L)

_ COMP2012/G52LACLanguages and ComputationLecture 15 —p.8/11

The Language of a TM (1)

L(M) = {w € 3" [(¢, q0,w) & (1, 4,78) A q € F}

A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also stop!

This is unlike the machines we have encountered
before.

_ CONPRATEIGEREAGLanaoes and Compuatentecre 19 -p At

Construct a TM that accepts the language
{a"b"c" | n € N}.

This is a language that cannot be defined by a
CFG or recognized by a PDA.

On the whiteboard.

There are many TM similators on-line. Try this
(or some other) example with one of those. E.g.:

http://ironphoenix.org/tm

_ COMP2012/G52LACLanguages and ComputationLecture 15 1111

The Language of a TM (2)

If a particular TM M stops, either in an
accepting or a non-accepting state, then M
L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.g.

input x; while (x<10);
What may come as a surprise is that there are

languages for which a TM cannot
decide membership; i.e., will loop on some inputs.

	Turing Machines (1)
	Turing Machines (2)
	Turing Machines (3)
	Definition of a Turing Machine
	Instantaneous Description (ID)
	The Next State Relation (1)
	The Next State Relation (2)
	The Language of a TM (1)
	The Language of a TM (2)
	Example

