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Turing Machines (3)

- All suggested notions of computation have so
far proved to be equivalent.

. : “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

« At first, given how simple TMs are, it may
seem surprising they can do much at all. E.g.
how can they even add or multiply?

- We will see that a TM at least is more
expressive than a PDA.
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The Next State Relation (1)

The next state relation on ID:

FCIDXxID
M

Read
Zdl Jl\_l ZdQ

“TM M moves in one step from id; to ids”
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Turing Machines (1)

+ A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

* A TM is a generalisation of a PDA: TM = FA +
infinite tape

+ Mainly used to study the
what (exactly!) can computers do (given suffi-
cient time and memory) and what can they
not do.

 There are other notions of computation, e.g.
the introduced by Alonzo Church
(G54FOPY)).
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Definition of a Turing Machine

ATM M =(Q,%,T,6,q, B, F') where
 (Q is afinite set of states
« ¥ is the input alphabet
« I' is the tape alphabet, & C T (finite)

cde@QxD — {stop} UQ xT x {L,R} is the
transition function

° gy € Q is the initial state
e Bisthe blank symbol, BT, B¢ X
¢ F C @ are the accepting (final) states
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The Next State Relation (2)

Letq. ¢ € Q,z,y,z €T, y,ypel™

1o (g evr) b (y,dvr) i 6(g ) = (¢, R)
2. (nz g evm) b (s d' zyye) 1 6(g,2) = (d'y, 1)
3. (eqxyr) b (6.d,Byyr)  if 0(g,7) = (¢, L)
4. (g by, d'€) it 6(¢,B) =(d",y, R)
5 (nzq.6) b (.4 2y) it 6(¢,B) = (d',y, L)
6. (6.9,) I (e,¢', By) it 6(¢,B) =(d",y,L)

Turing Machines (2)

Finite Control

< A movable read/write head
A 4

B|Bgx |y |z ]| zB

input
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Instantaneous Description (ID)

Instantaneous Descriptions (ID) describe the
of a TM computation:

ID=T*xQxT*
(vz,q,vr) € ID means:

- TMis in state ¢
« ~ is the non-blank part of the tape to the

of the head.
* g is the non-blank part of the tape to the
of the head, the current
position.
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The Language of a TM (1)

L(M) = {w € X" [ (¢,90,w) &= (72,4,78) N g € F}
A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also stop!

This is unlike the machines we have encountered
before.
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The Langusge o a T2

If a particular TM M /s stops, either in an Construct a TM that accepts the language
accepting or a non-accepting state, then M {a"b"¢" | n e N}
L(M). - ' .
Given that TMs model general purpose computers, -I(;T:'(SaIiraréacg%%?gsdtgstacggft be defined by a
it should not come as a surprise that they can ’
loop. Consider e.g. On the whiteboard.
input x; while (x<10); There are many TM similators on-line. Try this

(or some other) example with one of those. E.g.:
What may come as a surprise is that there are
languages for which a TM cannot
decide membership; i.e., will loop on some inputs.

_ e _ GNP oo s oo 5

http://ironphoenix.org/tm
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