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Turing Machines (1)

A Turing Machine (TM) is a mathematical
model of a general-purpose computer.
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Turing Machines (1)

A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

A TM is a generalisation of a PDA: TM = FA +
infinite tape

Mainly used to study the notion of computation:
what (exactly!) can computers do (given suffi-
cient time and memory) and what can they
not do.
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Turing Machines (1)

A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

A TM is a generalisation of a PDA: TM = FA +
infinite tape

Mainly used to study the notion of computation:
what (exactly!) can computers do (given suffi-
cient time and memory) and what can they
not do.

There are other notions of computation, e.g.
the \-calculus introduced by Alonzo Church
(G54FOP!).



Turing Machines (2)

Finite Control
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Turing Machines (2)

Finite Control
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Turing Machines (2)

Finite Control

movable read/write head
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Turing Machines (3)

All suggested notions of computation have so
far proved to be equivalent.
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Turing Machines (3)

All suggested notions of computation have so
far proved to be equivalent.

The Church-Turing Thesis: “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.
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Turing Machines (3)

All suggested notions of computation have so
far proved to be equivalent.

The Church-Turing Thesis: “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

At first, given how simple TMs are, it may
seem surprising they can do much at all. E.qg.
how can they even add or multiply?
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Turing Machines (3)

All suggested notions of computation have so
far proved to be equivalent.

The Church-Turing Thesis: “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

At first, given how simple TMs are, it may
seem surprising they can do much at all. E.qg.
how can they even add or multiply?

We will see that a TM at least iIs more
expressive than a PDA.
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Definition of a Turing Machine

ATM M = (Q,X, 1,0, qy, B, F') where
() Is a finite set of states
>3 IS the input alphabet
" is the tape alphabet, > C T" (finite)

0 €@ xI' = {stopf U@ xTI' x {L,R} is the
transition function

qo € @ Is the Initial state
B is the blank symbol, BeT', B ¢ %
F C (@) are the accepting (final) states
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Instantaneous Description (ID)

Instantaneous Descriptions (ID) describe the
state of a TM computation:

ID=T%xQ xTI*

(Y1, q,7vr) € ID means:
TM is in state ¢

v, I1s the non-blank part of the tape to the left
of the head.

~vg IS the non-blank part of the tape to the
right of the head, including the current
position.
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The Next State Relation (1)

The next state relation on ID:

- C ID x ID
M

Read
idq F ids
M

“TM M moves in one step from ¢d; to id,.”
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The Next State Relation (2)

Let Q7q/ < Qs L,Y, < - F: YL, YR cl”

1. (g 2vr) b (vey, ¢ ve) i (g 2) = (¢, R)
2. (v, q,amz) t (v dszyyr) 1T 0(g w) = (' y, L)
3. (e.q,27m) - (6 ¢,Byyr) if d(q,x) =(d",y, L)
4. (v, ¢:€) (1Y, 45 €) if 6(¢, B) = (¢, y, R)
5. (W,q,e) (.4, 2y) if 6(¢,B) = (¢'y, L)
6. (6,q,¢) (Eq By) if 6(¢q,B) = (¢'y, L)



The Language of a TM (1)

LIM) = {w e ¥ [ (¢,q0,w) & (y1,¢:78) A g € F}
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The Language of a TM (1)

*

L(M) — {w S | (67QO7w) z\l} (VL,CIWR) ANUAS F}

A TM stops if it reaches an accepting state.
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The Language of a TM (1)

L(M) ={w € X" | (€, o, w) A'} (2,4, 7R) N q € F}
A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and

current tape input.
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The Language of a TM (1)

L(M) ={w € X" | (€, o, w) A'} (2,4, 7R) N q € F}
A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also never stop!

This is unlike the machines we have encountered
before.
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The Language of a TM (2)

If a particular TM M always stops, either in an
accepting or a non-accepting state, then M
decides L(M).
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The Language of a TM (2)

It a particular TM M always stops, either in an
accepting or a non-accepting state, then M
decides L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.qg.

input x; while (x<10);
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The Language of a TM (2)

It a particular TM M always stops, either in an
accepting or a non-accepting state, then M
decides L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.qg.

input x; while (x<10);

What may come as a surprise is that there are
languages for which a TM necessarily cannot
decide membership; i.e., will loop on some inputs.
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Example

Construct a TM that accepts the language
{a"b"c" | n € N},

This is a language that cannot be defined by a
CFG or recognized by a PDA.

On the whiteboard.

There are many TM similators on-line. Try this
(or some other) example with one of those. E.g.:

http://ironphoenix.org/tm
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