
COMP2012/G52LAC

Languages and Computation
Lecture 18

Decidability and the Halting Problem

Henrik Nilsson

University of Nottingham

COMP2012/G52LACLanguages and ComputationLecture 18 – p.1/13

Recap: Turing Machines (1)

• A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

• A TM is a generalisation of a PDA: TM = FA +
infinite tape

COMP2012/G52LACLanguages and ComputationLecture 18 – p.2/13

Recap: Turing Machines (2)

Finite Control

B B x y z z B

movable read/write head

input

COMP2012/G52LACLanguages and ComputationLecture 18 – p.3/13

Recap: Turing Machines (3)

• Mainly used to study the notion of computation:
what can computers do (given suffi- cient time
and memory) and what can they not do.

• There are other notions of computation, such
that the λ-calculus.

• All suggested notions of computation have so
far proved to be equivalent.

• The Church-Turing Thesis: “Every function
which would naturally be regarded as
‘computable’ can be computed by a TM”.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.4/13



The Language of a TM (1)

L(M) = {w ∈ Σ∗ | (ǫ, q0, w)
∗

⊢
M

(γL, q, γR) ∧ q ∈ F}

A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also never stop!

This is unlike the machines lige DFAs, NFAs,
PDAa.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.5/13

The Language of a TM (2)

If a particular TM M always stops, either in an
accepting or a non-accepting state, then M
decides L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.g.

input x; while (x<10);

What may come as a surprise is that there are
languages for which a TM necessarily cannot
decide membership; i.e., will loop on some inputs.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.6/13

Recursive Language

L is recursive if L = L(M) for a TM M such that

1. if w ∈ L, then M accepts w (and thus halts)

2. if w /∈ L, then M eventually halts without ever
entering an accepting state.

Such a TM corresponds to an algorithm: a
well-defined sequence of steps that always
produces an answer in finite space and time.

We also say that M decides L.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.7/13

Recursively Enumerable (RE) Language

L is recursivele enumerable (RE) if L = L(M)
for a TM M .

I.e., M is not required to halt for w /∈ L.

Such a TM corresponds to a semi-algorithm.

Why “recursively enumerable”?

Because it is possible to construct a TM that
enumerates all strings in such a language in
some order. (But it will necessarily keep trying to
enumerate strings forever.)

COMP2012/G52LACLanguages and ComputationLecture 18 – p.8/13



Decidable and Undecidable

There are even languages that have no TM! The
non-RE languages.

• Decidable: a language or problem (encoded
as a language) that is recursive.

• Undecidable: a language or problem that is
RE but not recursive, or non-RE.

Example of non-RE language: The set of all
Turing machines accepting exactly 3 words.

(In fact, a simple cardinality argument shows that
most languages are non-RE: there are “many
more” languages than there are TMs.)

COMP2012/G52LACLanguages and ComputationLecture 18 – p.9/13

Halting Problem

Famous example of a RE language that is not
recursive; i.e. an undecidable language.

Informally: Can we write a program (TM) that takes
the text of an arbitrary program and input to that
program as input and decides whether the input
program terminates on the given input or not?

Formulated as a language: Is there a TM that
decides the language of terminating
programs/TMs?

Proof sketch on whiteboard.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.10/13

Other Undecidable Problems

• Whether two programs (computable
functions) are equal

• Whether a CFG is ambiguous

• Whether two CFGs are equivalent

• Rice’s Theorem: Whether the language of a
given TM has some particular non-trivial
property. (Non-trivial: holds for some but not
all languages.)

COMP2012/G52LACLanguages and ComputationLecture 18 – p.11/13

Rice’s Theorem (1)

(After Henry Gordon Rice; also known as the
Rice-Myhill-Shapiro theorem.)

Let C be a set of languages. Define

LC = { M | L(M) ∈ C }

where M ranges over all TMs. Then either LC is
empty, or it contains all TMs, or it is undecidable.

For example, C might be the set of regular languages.
As there are some TMs that recognise regular
languages, but not all do, LC is undecidable in
this case.

COMP2012/G52LACLanguages and ComputationLecture 18 – p.12/13



Rice’s Theorem (2)

Consequence: There are lots of really useful
programs that cannot be implemented perfectly.

E.g., virus detection: virus programs do exist, but
not all programs are viruses; being a virus is a
non-trivial property.

Caveat: Rice’s theorem is concerned with
properties of the language accepted by a TM,
not about properties of the TM (code) itself. E.g.,
it is certainly decidable if a TM has at most 10
states.

http://www.eecs.berkeley.edu/~luca/cs172/noterice.pdf

COMP2012/G52LACLanguages and ComputationLecture 18 – p.13/13


	Recap: Turing Machines (1)
	Recap: Turing Machines (2)
	Recap: Turing Machines (3)
	The Language of a TM (1)
	The Language of a TM (2)
	Recursive Language
	Recursively Enumerable (RE)
Language
	Decidable and Undecidable
	Halting Problem
	Other Undecidable Problems
	Rice's Theorem (1)
	Rice's Theorem (2)

