Recap: Turing Machines (1)

» A Turing Machine (TM) is a mathematical
model of a general-purpose computer.

« A TM is a generalisation of a PDA: TM = FA +

infinite tape
Henrik Nilsson
University of Nottingham
Recap: Turing Machines (2) Recap: Turing Machines (3)

» Mainly used to study the
what can computers do (given suffi- cient time

Finite Control and memory) and what can they not do.

« There are other notions of computation, such
that the

« All suggested notions of computation have so
far proved to be equivalent.

movable read/write head

. : “Every function
which would naturally be regarded as

input ‘computable’ can be computed by a TM”.

COMP2012/G52LACLanguages and ComputationLecture 18 —p.3/13

COMP2012/G52LACLanguages and ComputationLecture 18 —p.4/13

The Language of a TM (1)

The Language of a TM (2)

L(M) = {w € 3" [(¢, q0,w) & (1, 4,78) A q € F}

A TM stops if it reaches an accepting state.

A TM stops in a non-accepting state if the
transition function returns stop for that state and
current tape input.

However, it may also stop!

This is unlike the machines lige DFAs, NFAs,
PDAa.

Q
o]
»
o]
o
a
o

Recursive Language

Lis if L =L(M)foraTM M such that
1. ifw € L, then M accepts w (and thus halts)

2. ifw ¢ L, then M eventually halts without ever
entering an accepting state.

Such a TM corresponds to an :a
well-defined sequence of steps that always
produces an answer in finite space and time.

We also say that M L.

a
a
©

If a particular TM M stops, either in an
accepting or a non-accepting state, then M
L(M).

Given that TMs model general purpose computers,
it should not come as a surprise that they can
loop. Consider e.g.

input x; while (x<10);
What may come as a surprise is that there are

languages for which a TM cannot
decide membership; i.e., will loop on some inputs.

COMP2012/G52LACLanguages and ComputationLecture 18 —p.6/13

Recursively Enumerable (RE) Language

Lis if L =L(M)
fora TM M.

l.e., M is required to halt for w ¢ L.
Such a TM corresponds to a
Why “recursively enumerable”?

Because it is possible to construct a TM that
enumerates all strings in such a language in
some order. (But it will necessarily keep trying to
enumerate strings forever.)

_ COMP2012/G52LACLanguages and ComputationLecture 18 —p.8/13

Decidable and Undecidable Halting Problem

There are even languages that have no TM! The

non-RE languages. Famous example of a RE language that is not

recursive; i.e. an undecidable language.
- Decidable: a language or problem (encoded

as a language) that is recursive. Informally: Can we write a program (TM) that takes

_ . the text of an program and input to that
* Undecidable: a language or problem that is program as input and decides whether the input
RE but not recursive, or non-RE. program terminates on the given input or not?
Example of non-RE language: The set of all Formulated as a language: Is there a TM that
Turing machines accepting exactly 3 words. the language of terminating
(In fact, a simple cardinality argument shows that programs/TMs?
most languages are non-RE: there are “many Proof sketch on whiteboard.
more” languages than there are TMs.)
Other Undecidable Problems Rice’s Theorem (1)
- Whether a CFG is ambiguous Let C be a set of languages. Define
« Whether two CFGs are equivalent Le={M|L(M)eC}

- Rice’s Theorem: Whether the language of a
given TM has some particular

property. (Non-trivial: holds for some but not
all languages.) For example, C' might be the set of regular languages.

As there are some TMs that recognise regular
languages, but not all do, L is undecidable in
this case.

where M ranges over all TMs. Then either L¢ is
empty, or it contains all TMs, or it is undecidable.

»
o}
&
8
N~
>
s}
e
b
2
a
5
&
S
I3
o
2
3
o
&
5
©
a
&
5
©

Rice’s Theorem (2)

Consequence: There are lots of really useful
programs that cannot be implemented

E.g., virus detection: virus programs do exist, but
not all programs are viruses; being a virus is a
non-trivial property.

Caveat: Rice’s theorem is concerned with
properties of the accepted by a TM,
not about properties of the TM (code) itself. E.g.,
it is certainly decidable if a TM has at most 10
states.

http://www.eecs.berkeley.edu/~luca/csl72/noterice.pdf

	Recap: Turing Machines (1)
	Recap: Turing Machines (2)
	Recap: Turing Machines (3)
	The Language of a TM (1)
	The Language of a TM (2)
	Recursive Language
	Recursively Enumerable (RE)
Language
	Decidable and Undecidable
	Halting Problem
	Other Undecidable Problems
	Rice's Theorem (1)
	Rice's Theorem (2)

