Recap: Turing Machines (1)

COMP2012/G52LAC

Languages and Computation
Lecture 18
Decidability and the Halting Problem

Henrik Nilsson

University of Nottingham

- A Turing Machine (TM) is a mathematical model of a general-purpose computer.
- A TM is a generalisation of a PDA: TM = FA + infinite tape

Recap: Turing Machines (2)

Recap: Turing Machines (3)

- Mainly used to study the notion of computation: what can computers do (given suffi- cient time and memory) and what can they not do.
- There are other notions of computation, such that the λ-calculus.
- All suggested notions of computation have so far proved to be equivalent.
- The Church-Turing Thesis: "Every function which would naturally be regarded as 'computable' can be computed by a TM".

The Language of a TM (1)

$L(M)=\left\{w \in \Sigma^{*} \mid\left(\epsilon, q_{0}, w\right) \stackrel{*}{\stackrel{*}{M}}\left(\gamma_{L}, q, \gamma_{R}\right) \wedge q \in F\right\}$
A TM stops if it reaches an accepting state.
A TM stops in a non-accepting state if the transition function returns stop for that state and current tape input.

However, it may also never stop!
This is unlike the machines lige DFAs, NFAs, PDAa.

Recursive Language

L is recursive if $L=L(M)$ for a TM M such that

1. if $w \in L$, then M accepts w (and thus halts)
2. if $w \notin L$, then M eventually halts without ever entering an accepting state.
Such a TM corresponds to an algorithm: a well-defined sequence of steps that always produces an answer in finite space and time.

We also say that M decides L.

The Language of a TM (2)

If a particular TM M always stops, either in an accepting or a non-accepting state, then M decides $L(M)$.
Given that TMs model general purpose computers, it should not come as a surprise that they can loop. Consider e.g.

```
input x; while (x<10);
```

What may come as a surprise is that there are languages for which a TM necessarily cannot decide membership; i.e., will loop on some inputs.

Recursively Enumerable (RE) Language

L is recursivele enumerable (RE) if $L=L(M)$ for a TM M.
I.e., M is not required to halt for $w \notin L$.

Such a TM corresponds to a semi-algorithm.
Why "recursively enumerable"?
Because it is possible to construct a TM that enumerates all strings in such a language in some order. (But it will necessarily keep trying to enumerate strings forever.)

Decidable and Undecidable

There are even languages that have no TM! The non-RE languages.

- Decidable: a language or problem (encoded as a language) that is recursive.
- Undecidable: a language or problem that is RE but not recursive, or non-RE.
Example of non-RE language: The set of all Turing machines accepting exactly 3 words.
(In fact, a simple cardinality argument shows that most languages are non-RE: there are "many more" languages than there are TMs.)

Other Undecidable Problems

- Whether two programs (computable functions) are equal
- Whether a CFG is ambiguous
- Whether two CFGs are equivalent
- Rice's Theorem: Whether the language of a given TM has some particular non-trivial property. (Non-trivial: holds for some but not all languages.)

Halting Problem

Famous example of a RE language that is not recursive; i.e. an undecidable language.
Informally: Can we write a program (TM) that takes the text of an arbitrary program and input to that program as input and decides whether the input program terminates on the given input or not?
Formulated as a language: Is there a TM that decides the language of terminating programs/TMs?

Proof sketch on whiteboard.

Rice's Theorem (1)

(After Henry Gordon Rice; also known as the
Rice-Myhill-Shapiro theorem.)
Let C be a set of languages. Define

$$
L_{C}=\{M \mid L(M) \in C\}
$$

where M ranges over all TMs. Then either L_{C} is empty, or it contains all TMs, or it is undecidable.

For example, C might be the set of regular languages.
As there are some TMs that recognise regular languages, but not all do, L_{C} is undecidable in this case.

Rice's Theorem (2)

Consequence: There are lots of really useful programs that cannot be implemented perfectly.
E.g., virus detection: virus programs do exist, but not all programs are viruses; being a virus is a non-trivial property.
Caveat: Rice's theorem is concerned with properties of the language accepted by a TM, not about properties of the TM (code) itself. E.g., it is certainly decidable if a TM has at most 10 states.
http://www.eecs.berkeley.edu/~luca/cs172/noterice.pdf

