
G52LAC

P vs. NP

Andrew Parkes

http://www.cs.nott.ac.uk/~pszajp/

http://www.cs.nott.ac.uk/~ajp/

Overview

Theory of P and NP

• Definitions and usages

• DTM and P

• NDTM and NP

• Reductions

• NP-hard vs NP-complete

• SAT, and other NP-complete problems

• Many papers justify algorithm choices by
“the problem is NP-complete”, and so should know
what this means.

G52LACMay 2018 2

Runtimes of Common Algorithms

• Broad groups of time behaviours, (with input size n):

• “Logarithmic” – O(log n), often “polylogarithmic”
i.e. polynomial in log n, e.g. O((log n)k) for some fixed k

• “Polynomial” – O(nk) for some fixed k
(k is not allowed to depend on n)

• “Exponential” – O(2an) for some fixed a>0

• Problems within these groups are not all “equal”

• Not all “exponential time problems” are “of the same
kind”

• Even in the same group, problems can be in different
complexity classes and so need different kinds of algorithms
and heuristics.

• We can get insights into “problem difficulty” using
“reductions”

G52LACMay 2018 3

Introduction to idea of reductions

• Suppose that have a ‘library function’
sort(int[] A)
that puts the array A into ascending (strictly non-
descending) order.

• How can you use it to sort into descending
order?

May 2018 G52LAC 4

Introduction to idea of reductions

• Two “obvious” options
• take the negative of all of A, then sort, and take negative

again

• sort into ascending and then reverse the list

• Both are O(n) extra work

• The problem

• “sort into descending order”

can be “quickly” “reduced” to the problem

• “sort into ascending order”

• If we know “ascending” can be done in O(n log
n) time then we know that “descending can also
be done in O(n log n)
May 2018 G52LAC 5

Motivations for P and NP
Observationally (1960s/70s), many practical (O.R.)
problems seem to split into two classes:

• “Efficient”: Exact algorithms with runtimes of with low-
order power laws

• Sorting, Assignment problem, Shortest path, Network flow,
(linear programming), etc.

• “Inefficient”: All complete/exact algorithms had
exponential runtime, though incomplete or approximate
methods often fast
• TSP, graph colouring, scheduling, etc.

• Theory of P and NP was developed to capture this split

• first need to “define a computer”:

May 2018 G52LAC 6

Turing Machines (TM)

• P/NP theory is usually phrased using Turing Machines

• A Turing machine is deterministic if there is at most
one action or 5-tuple for any current state qk and any
current symbol that can occur when the machine is in
state qk.

• “At most one choice for the next move”

G52LACMay 2018 7

x1 x2 x3 -- Xn #

-3 -2 -1 0 1 2 3 n

q Head

x1 x2 x3 -- Xn #

-3 -2 -1 0 1 2 3 n

q Head

Definition of P

• P is the set of problem classes that can be solved using
some Deterministic TM in polynomial time p(n)

G52LACMay 2018 8

9

Standard Decision Problems

It is usual to work in terms of decision problems.

It is standard to write decision problems in the
format

“INSTANCE” the input data

“QUESTION” the simple yes/no question that an
algorithm must answer

To help motivate and explain NP will use “SUBSET-SUM”:

G52LACMay 2018

10

Subset Sum

INSTANCE:
A set S of n positive integers a[i] i=1,…,n

A target integer K

QUESTION:
Is there a subset T of S such that the elements
of T sum up to precisely K

sum(i in T, a[i]) = K

G52LACMay 2018

Solving SUBSET SUM

INSTANCE:
A set S of n positive integers a[i] i=1,…,n

A target integer K

QUESTION:
Is there a subset T of S such that the elements of T sum up
to precisely K

sum(i in T, a[i]) = K

Questions:

1. Give an algorithm to verify a claimed solution, T, to
this. What is its complexity?

2. Give an algorithm to solve SUBSET-SUM. What is its
complexity?

G52LAC 11May 2018

Solving SUBSET SUM

Verifying a claimed solution is only O(n)

Algorithm to solve subset sum:

For all subsets T of S

if (sum(T) == K) return true

return false

Complexity: O(2n)

Advanced algorithms only improve this to

O(2an), for some 0 < a < 1.

G52LAC 12May 2018

Solving SUBSET SUM

Poly-time “Algorithm” to solve subset sum:
For each element i:

either:

place a[i] in T

or:

place a[i] not in T

Check when finished if sum(T) == K,

if so return “yes”, else return “no”

• Catch: This is not a proper algorithm as there is no
prescription for which “either-or” option to take.

• But: the overall answer to the SUBSET-SUM is “yes” iff
some sequence of “either / or” choices will give “yes”

G52LAC 13May 2018

Non-Deterministic Turing Machine
• From given state of the machine, and head position and

tape symbol there can be more than one option for the
next action

• One action will be selected

• but it is not specified which one

• IMPORTANT: This is not the same as
“probabilistic” or “random”

• there is no implication of making the choice “with
uniform probability”, or any probability distribution at all.

• Closer to being “the opposite of random”, e.g. “super-
lucky” or “super-intelligent” – “always does the best
thing”

May 2018 G52LAC 14

NDTM for Decision Problems

• A NDTM working on a decision problem outputs

• “yes” iff some sequence of non-deterministic
decisions gives a “yes”

• “no” iff all sequences give “no”

• Note the very strong asymmetry:
A single “yes” is enough to outweigh any number
of “no”

• It is not directly physically realisable (as far as is
known?); but a very convenient device for
defining useful complexity classes

May 2018 G52LAC 15

G52LAC

Execution tree of NP

• A tree that succeeds:

Time

…

…

May 2018 16

“yes”

“no”

“no”

“Advice Strings” or “oracles”
Poly-time “Algorithm” to solve subset sum:

Suppose have an extra poly-length input string s of {T,F}
For each element i:

if getNext(s)

place a[i] in T

else

place a[i] not in T

Check when finished if sum(T) == K,

if so return “yes”, else return “no”

• If the overall answer to the SUBSET-SUM is “yes” then some string s
will guide to that solution

• like an “oracle” or “satnav”

• ‘s’ guides the execution – but in itself does not solve the problem

• If the instance has no solutions, then all strings s must give ‘no’

• (So is not ‘just cheating’).

G52LAC 17May 2018

Definition of NP

• NP is the set of problems that can be solved using
some Nondeterministic TM in Polynomial time

• Note that this is a positive statement:

• there exists a program, but it is allowed to use non-
determinism

G52LACMay 2018 18

Definition of NP
• A problem is in NP if and only if there is some

Polynomial time algorithm for it on some NDTM

• The non-deterministic algorithm is essentially a
sequence of “good guesses”

• Just need that verifying a “guessed solution” is in P

• Note: NP does not stand for “Non-Polynomial”!!

• If it did, then P vs. NP would be a nonsense question!

• Being “in NP” is a positive statement about an
algorithm existing.

G52LACMay 2018 19

“Obvious” Results

• P is a subset of NP

• Many common decision problems are “obviously”
in NP

• Two examples follow

• More examples are listed in the “Appendix”

May 2018 G52LAC 20

21

NUMBER PARTITION
INSTANCE:

set of n positive integers a[i] i=1,…,n

QUESTION:

is there a partition of the numbers into two sets S1 S2,
such that each subset sums up to the same value:

sum(i in S1, a[i]) = sum(i in S2, a[i])

“Obviously” in NP, by same reasoning as for
SUBSET-SUM

Thought Exercise:

Does this seem (intuitively) easier or harder than SUBSET-SUM?

G52LACMay 2018

22

SAT (boolean satisfiability)
• Variables are atoms, e.g. x1,…,xn

• A literal is an atom or its negation
• e.g. x1, ¬x1, …

• A clause is a disjunction of literals

• An expression in CNF (clausal normal form) is a
conjunction of clauses

E.g. (x1 \/ ¬ x2) /\

(x3 \/ x2 \/ ¬ x1)

May 2018 G52LAC

23

SAT (boolean satisfiability)
INSTANCE:

boolean variables x1,…,xn

a boolean expression G in clausal normal form (that is a
conjunction of disjunctions of literals)

QUESTION:
Is there a satisfying assignment for G?
That is, is there truth assignment to the variables such
that G is satisfied (evaluates to true)?

“Obviously”:
• solvable – just enumerate all 2n possible assignments
• “in NP” – just use nondeterminism to select the

assignment if it exists, then check it

G52LACMay 2018

24

Relations between P and NP

• Situation so far seems to be

NP

P

SUBSET-SUM

Shortest
path

…

…

May 2018 G52LAC

SAT

P vs. NP

• It is not known if P = NP

• $1m prize for solving it – see millennium problems

• http://www.claymath.org/millennium-problems/p-vs-
np-problem

• If P=NP, then any problem in NP that we can
solve in polytime on an NDTM can also be solved
in polytime on a DTM.

May 2018 G52LAC 25

http://www.claymath.org/millennium-problems/p-vs-np-problem

Impact

A major CS result in 1970’s, and the theory of “NP-
completeness”, was that:

many thousands of common but different-looking
problems are provably “equally hard”, even
though we cannot (yet?) prove any of them are
“actually hard”.

26May 2018 G52LAC

27

“Reductions”: Overview

• It is common in computability to try to relate
together the hardness of two different problem
classes

• Suppose have two problem classes X and Y then
one might try to make statements such as
(roughly)

• “X requires as much time as Y”

• “If Y can be solved quickly then so can X”

• etc

May 2018 G52LAC

28

Reductions

• We talked of reducing one problem to another:

• Given an instance x of problem class X

• convert to an instance y(x) of problem class y

• Solve x by solving y(x)

• “x=yes” if and only “y(x)=yes”

• Reductions give information about relative
hardness of problems even in cases that the true
hardness is not known

• Finding reductions can be ‘tricky’

• (If doing new problems then it may be important to
develop the needed skills.)

May 2018 G52LAC

29

Unrestricted “Conversions”?

• If we allow the conversion to be unrestricted
then the concept of reduction is not useful for P
and NP

• Can reduce everything to trivial problems, because the
conversion itself can essentially solve the problem

• We want to be able to reason about what can or
cannot be done in polynomial time

• Hence, for questions about P and NP we decide
to restrict ourselves to reductions that can be
done in polynomial time

May 2018 G52LAC

30

Polynomial Time Reductions

Given any instance x of a problem class X

then compute an instance f(x) in problem class Y

• With the conversion done in polynomial time

• Such that the answer is preserved:

ans(x)=yes if and only if ans(f(x))=yes

boolean solveX(instanceX x) {
instanceY y = convert_X_to_Y(x); // f(x)

return solveY(y);

}

Function `convert_X_to_Y’ must run in polytime

May 2018 G52LAC

31

Remarks
• The mapping is “into” but does not need to be “onto”

• Many instances of class Y might not arise from any
instance x of class X

f

X Y
f(X)

x

f(x)

May 2018 G52LAC

32

Definition: NP-hard

• Suppose that Z is some problem class

• If we can (in polynomial time) reduce ANY
problem in NP to Z then we say that Z is NP-hard

• It means that ‘Z’ is ‘as bad as it gets’

• If ‘Z’ turns out to be in P, then all problems in NP are
also in P, i.e. P=NP

• We can convert any problem within NP to ‘Z’

• Note: it does NOT need to be the case that Z itself in NP

• many problems are NP-hard because they are “far more powerful
than NP”

May 2018 G52LAC

33

Next Steps?

• Using reduction we aim link the hardness of
different problems:

‘X is NP-hard’ therefore ‘Y is NP-hard’

• ‘X’ can solve all problems in NP
therefore, also
‘Y’ can solve all problems in NP

May 2018 G52LAC

34

NP-complete

• A problem class X (such as SUBSET-SUM) is said to
be NP-complete, if and only if both of the
following are satisfied:
• X is in NP,

• all instances of X can be solved in nondeterministic polynomial
time

• membership of NP is usually demonstrated directly (and fairly
easily)

• X is NP-hard
• all problems within NP (not just X) can be solved by converting

them (in polytime!) to some instance of X

• this is usually done by showing (polytime) reduction from some
known NP-complete problem to X

May 2018 G52LAC

Caution:

• Do not confuse “NP-hard” and “NP-complete”

• A problem being NP-hard does not
automatically mean it is NP-complete

• For most problem classes and results you see
then it will be also complete, but it is not always
true.

May 2018 G52LAC 35

36

Starting chains of reductions

• The reductions needs a starting point!

• Cook & Levin (1971) proved that SAT is NP-hard
• SAT is clearly in NP

• Since then, people prove NP completeness by reduction chains
starting from SAT

• The proof works by showing that
• any polytime Non-deterministic (Turing) machine running in

polytime converts to some polysize SAT formula

• existence of an accepting execution path of the NDTM
corresponds to a satisfying assignment of the SAT formula

May 2018 G52LAC

37

Chaining between problems

• Consider NP-complete (NPC) problems

ALL NP
SAT … NPC-2

Initial ‘base’
step (Cook-Levin)

Polytime
reduction

…

May 2018 G52LAC

38

Chain reasoning

Given:

• Any problem in NP can be solved by conversion
(in polytime) to some instance of NPC-1

• Any problem in NPC-1 can be solved by
conversion (in polytime) to some instance of
NPC-2

Then:

• Any problem in NP can be solved by conversion
(in polytime) to some instance of NPC-2

The chains allow to reduce any NP-complete
problem to any other NP-complete problem.

May 2018 G52LAC

39

CAUION: BAD ORDERING

• Suppose the reduction is ‘back-to-front’

ALL NP
NPC-1 Problem 2

Initial ‘base’
step (Cook-Levin)

BAD
Polytime
reduction

…

We cannot
deduce that
Problem 2
solve all of
NP

May 2018 G52LAC

Example:
Reducing from PART to SUBSET-SUM

• This means that we need to give a method to
convert any instance of PART into some
instance of SUBSET-SUM (SSUM for short)

• The “any” and “some” are vital

• (Of course, it is implicit that the answer by using
SUBSET-SUM should used to give the correct
answer to PART.)

40May 2018 G52LAC

Reducing PART to SUBSET-SUM

• Given

boolean SSUM(int[] arr, int k)

• Implement

boolean PART(int[] arr)

41May 2018 G52LAC

Reducing PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for(int i = 0 ; i < arr.length ; i++) {

sum += arr[i];
}

if (sum %2 == 1) return false;
return SSUM(arr, sum/2);

}

42May 2018 G52LAC

Reducing PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for(int i = 0 ; i < arr.length ; i++) {

sum += arr[i];
}

if (sum%2 == 1) return false;
return SSUM(arr, sum/2);

}

What can we conclude?

Reduction from PART to SSUM

shows

If SSUM is easy, then so is PART

43May 2018 G52LAC

Reducing from PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for(int i = 0 ; i < arr.length ; i++) {

sum += arr[i];
}

if (k%2 == 1) return false;
return SSUM(arr, sum/2);

}

What can we conclude?

Reduction from PART to SSUM

shows

If PART is NP-hard then SSUM is NP-hard

44May 2018 G52LAC

Essence of NP-complete Problems

• Naïve and “sound and complete” algorithms are
exponential time

• They are “guess and verify”

• Verification is fast, i.e. in P

• Theory:

• “Guess” is encoded using “Non-determinism”

• Practice:

• “Guess” is encoded using “Heuristics”

• “Non-determinism” can be thought of as a
“perfect heuristic” obtained from a (“magic”)
“oracle”
May 2018 G52LAC 45

Expectations include:
• Know definitions of P and NP

• That, trivially, P is a subset of NP

• Understand the P = NP question:

• That it is currently unsolved

• Why it is important

• Definitions of NP-hard and NP-complete

• Reductions, in general

• And how they relate “the difficulty of problems”

• That can, in poly-time

• Reduce “all NP” to SAT

• Reduce any problem in NP, to SAT, or any other NP-complete
problem

May 2018 G52LAC 46

“Appendix”

• Some more NP-complete problems

• For each one you should check that it is in NP

May 2018 G52LAC 47

48

Graph Colouring (GC)

INSTANCE:
an undirected graph G = (V,E) with vertices V and edges E
an integer k

QUESTION
Is there a legal colouring of G with k colours. I.e. can we
assign a colour c(v) to every vertex v in V, such that for
every edge, the nodes at the ends are different colours?

Usage: many usages. E.g. node is an exam, edge is that the
two exams have a student in common, colour is the timeslot
it is assigned to. Colouring corresponds to a legal timetable
with no-one in two exams a the same time

G52LACMay 2018

49

INDEPENDENT SET
INSTANCE:

an undirected graph G
an integer k

QUESTION
is there an independent vertex set of size k?

I.e. is there a set of k vertices such that all no
pair within the set have an edge between them?

Usage: (exercise)

G52LACMay 2018

50

CLIQUE
INSTANCE:

an undirected graph G

an integer k

QUESTION

is there an clique of size k?
I.e. is there a set of k vertices such that all pairs within
the set have an edge between them?

Usage: Many uses. Finding a closely connected set of
friends in a social network. Timetabling (exercise: why?)

G52LACMay 2018

51

VERTEX COVER
INSTANCE:

an undirected graph G
an integer k

QUESTION
is there set of k vertices such that they cover all the

edges of the graph? I.e. can we pick a set of vertices
such that for all edges, at least one of the end vertices is
in the set.

Many usages: E.g. facility location:
• so everyone is close to a fire station
• so CCTV can see every corridor,
• etc

G52LACMay 2018

52

TSP(D)
Decision version of the TSP (Travelling Salesperson

Problem)

INSTANCE:
A graph G with distances on the edges
A target distance d

QUESTION:
Is there a tour of all the vertices with total sum of the
edge lengths being at most d?

Usage: vehicle routing problems, delivery and collection
systems

G52LACMay 2018

Note: Optimisation vs. Decision

• Need to distinguish

• Decision Problem:

• Simple yes/no answer

• Optimisation Problem

• Find a min or max value for some objective

• Complexity theory generally works in terms of
Decision Problems

• Conversion is simple:

• Minimisation of f, becomes picking an maximum
allowed value “k” and using the decision version
“is there a solution with f < k”

• Binary search on k can then do the minimisation
May 2018 G52LAC 53

54

INTEGER PROGRAMMING
INSTANCE:

A set of nonnegative integer variables, x[i]
A set of linear inequalities on the variables

QUESTION
Is there an assignment of values such that all the
inequalities are satisfied

Note:
This is different: Why is it not “obvious” that the problem is

in NP? Instead a difficult theorem is needed (Exercise.
Hint: What is the size of an “answer”?)

G52LACMay 2018

