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Overview

Theory of P and NP

• Definitions and usages

• DTM and P

• NDTM and NP

• Reductions

• NP-hard vs NP-complete

• SAT, and other NP-complete problems

• Many papers justify algorithm choices by
“the problem is NP-complete”, and so should know 
what this means.
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Runtimes of Common Algorithms

• Broad groups of time behaviours, (with input size n):

• “Logarithmic” – O( log n ), often “polylogarithmic” 
i.e. polynomial in log n, e.g. O( (log n)k )  for some fixed k

• “Polynomial” – O( nk ) for some fixed k  
(k is not allowed to depend on n)

• “Exponential” – O( 2an ) for some fixed a>0

• Problems within these groups are not all “equal” 

• Not all “exponential time problems” are “of the same 
kind”

• Even in the same group, problems can be in different 
complexity classes and so need different kinds of algorithms 
and heuristics.

• We can get insights into “problem difficulty” using 
“reductions”
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Introduction to idea of reductions

• Suppose that have a ‘library function’ 
sort(int[] A) 
that puts the array A into ascending (strictly non-
descending) order. 

• How can you use it to sort into descending 
order?
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Introduction to idea of reductions

• Two “obvious” options
• take the negative of all of A, then sort, and take negative 

again 

• sort into ascending and then reverse the list

• Both are O(n) extra work 

• The problem 

• “sort into descending order” 

can be “quickly” “reduced” to the problem

• “sort into ascending order”

• If we know “ascending” can be done in O(n log 
n) time then we know that “descending can also 
be done in O(n log n)
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Motivations for P and NP
Observationally (1960s/70s), many practical (O.R.) 
problems seem to split into two classes:

• “Efficient”: Exact algorithms with runtimes of with low-
order power laws

• Sorting, Assignment problem, Shortest path, Network flow, 
(linear programming), etc. 

• “Inefficient”: All complete/exact algorithms had 
exponential runtime, though incomplete or approximate 
methods often fast
• TSP, graph colouring, scheduling, etc.

• Theory of P and NP was developed to capture this split

• first need to “define a computer”:
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Turing Machines (TM)

• P/NP theory is usually phrased using Turing Machines

• A Turing machine is deterministic if there is at most 
one action or 5-tuple for any current state qk and any 
current symbol that can occur when the machine is in 
state qk.

• “At most one choice for the next move”
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Definition of P

• P is the set of problem classes that can be solved using 
some Deterministic TM in polynomial time p(n)
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Standard Decision Problems

It is usual to work in terms of decision problems.

It is standard to write decision problems in the 
format

“INSTANCE” the input data

“QUESTION” the simple yes/no question that an 
algorithm must answer

To help motivate and explain NP will use “SUBSET-SUM”:
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Subset Sum

INSTANCE: 
A set S of n positive integers a[i] i=1,…,n

A target integer K

QUESTION: 
Is there a subset T of S such that the elements 
of T sum up to precisely K

sum( i in T,   a[i] ) = K
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Solving SUBSET SUM

INSTANCE: 
A set S of n positive integers a[i] i=1,…,n

A target integer K

QUESTION: 
Is there a subset T of S such that the elements of T sum up 
to precisely K

sum( i in T,   a[i] ) = K

Questions: 

1. Give an algorithm to verify a claimed solution, T, to 
this. What is its complexity? 

2. Give an algorithm to solve SUBSET-SUM. What is its 
complexity?
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Solving SUBSET SUM

Verifying a claimed solution is only O(n)

Algorithm to solve subset sum:

For all subsets T of S 

if (sum(T) == K ) return true

return false

Complexity: O( 2n )

Advanced algorithms only improve this to 

O( 2an ), for some 0 < a < 1.
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Solving SUBSET SUM

Poly-time “Algorithm” to solve subset sum:
For each element i:

either: 

place a[i] in T

or: 

place a[i] not in T

Check when finished if   sum(T) == K, 

if so return “yes”, else return “no”

• Catch: This is not a proper algorithm as there is no 
prescription for which “either-or” option to take.

• But: the overall answer to the SUBSET-SUM is “yes” iff
some sequence of “either / or” choices will give “yes” 
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Non-Deterministic Turing Machine
• From given state of the machine, and head position and 

tape symbol there can be more than one option for the 
next action

• One action will be selected

• but it is not specified which one

• IMPORTANT: This is not the same as 
“probabilistic” or “random”

• there is no implication of making the choice “with 
uniform probability”, or any probability distribution at all.

• Closer to being “the opposite of random”, e.g. “super-
lucky” or “super-intelligent” – “always does the best 
thing”
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NDTM for Decision Problems

• A NDTM working on a decision problem outputs

• “yes” iff some sequence of non-deterministic 
decisions gives a “yes”

• “no” iff all sequences give “no”

• Note the very strong asymmetry: 
A single “yes” is enough to outweigh any number 
of “no”

• It is not directly physically realisable (as far as is 
known?); but a very convenient device for 
defining useful complexity classes
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Execution tree of NP

• A tree that succeeds:

Time

…

…
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“Advice Strings” or “oracles”
Poly-time “Algorithm” to solve subset sum:

Suppose have an extra poly-length input string s of {T,F}
For each element i:

if getNext(s)

place a[i] in T

else

place a[i] not in T

Check when finished if   sum(T) == K, 

if so return “yes”, else return “no”

• If the overall answer to the SUBSET-SUM is “yes” then some string s 
will guide to that solution 

• like an “oracle” or “satnav”

• ‘s’ guides the execution – but in itself does not solve the problem

• If the instance has no solutions, then all strings s must give ‘no’

• (So is not ‘just cheating’).
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Definition of NP

• NP is the set of problems that can be solved using 
some Nondeterministic TM in Polynomial time

• Note that this is a positive statement:

• there exists a program, but it is allowed to use non-
determinism
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Definition of NP
• A problem is in NP if and only if there is some 

Polynomial time algorithm for it on some NDTM

• The non-deterministic algorithm is essentially a 
sequence of “good guesses”

• Just need that verifying a “guessed solution” is in P

• Note: NP does not stand for “Non-Polynomial”!!

• If it did, then P vs. NP would be a nonsense question!  

• Being “in NP” is a positive statement about an 
algorithm existing.  
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“Obvious” Results

• P is a subset of NP

• Many common decision problems are “obviously” 
in NP

• Two examples follow

• More examples are listed in the “Appendix”
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NUMBER PARTITION
INSTANCE: 

set of n positive integers a[i] i=1,…,n

QUESTION:

is there a partition of the numbers into two sets S1 S2, 
such that each subset sums up to the same value:

sum(i in S1, a[i]) = sum(i in S2, a[i])

“Obviously” in NP, by same reasoning as for 
SUBSET-SUM

Thought Exercise:

Does this seem (intuitively) easier or harder than SUBSET-SUM? 
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SAT  (boolean satisfiability)
• Variables are atoms, e.g. x1,…,xn

• A literal is an atom or its negation 
• e.g. x1, ¬x1, …

• A clause is a disjunction of literals

• An expression in CNF (clausal normal form) is a 
conjunction of clauses

E.g.           ( x1 \/ ¬ x2 )   /\

( x3 \/ x2 \/ ¬ x1 )
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SAT  (boolean satisfiability)
INSTANCE: 

boolean variables x1,…,xn

a boolean expression G in clausal normal form (that is a 
conjunction of disjunctions of literals)

QUESTION:
Is there a satisfying assignment for G?
That is, is there truth assignment to the variables such 
that G is satisfied (evaluates to true)?

“Obviously”:
• solvable – just enumerate all 2n possible assignments 
• “in NP” – just use nondeterminism to select the 

assignment if it exists, then check it
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Relations between P and NP

• Situation so far seems to be

NP

P

SUBSET-SUM

Shortest
path

…

…
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P vs. NP

• It is not known if P = NP

• $1m prize for solving it – see millennium problems

• http://www.claymath.org/millennium-problems/p-vs-
np-problem

• If P=NP, then any problem in NP that we can 
solve in polytime on an NDTM can also be solved 
in polytime on a DTM.
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Impact

A major CS result in 1970’s, and the theory of “NP-
completeness”, was that:  

many thousands of common but different-looking 
problems are provably “equally hard”, even 
though we cannot (yet?) prove any of them are 
“actually hard”.
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“Reductions”: Overview

• It is common in computability to try to relate 
together the hardness of two different problem 
classes 

• Suppose have two problem classes X and Y then 
one might try to make statements such as 
(roughly)

• “X requires as much time as Y”

• “If Y can be solved quickly then so can X”

• etc
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Reductions

• We talked of reducing one problem to another:

• Given an instance x of problem class X

• convert to an instance y(x) of problem class y

• Solve x by solving y(x)

• “x=yes”  if and only  “y(x)=yes”

• Reductions give information about relative 
hardness of problems even in cases that the true 
hardness is not known

• Finding reductions can be ‘tricky’

• (If doing new problems then it may be important to 
develop the needed skills.)
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Unrestricted “Conversions”?

• If we allow the conversion to be unrestricted 
then the concept of reduction is not useful for P
and NP

• Can reduce everything to trivial problems, because the 
conversion itself can essentially solve the problem

• We want to be able to reason about what can or 
cannot be done in polynomial time

• Hence, for questions about P and NP we decide 
to restrict ourselves to reductions that can be 
done in polynomial time
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Polynomial Time Reductions

Given any instance x of a problem class X 

then compute an instance f(x) in problem class Y

• With the conversion done in polynomial time

• Such that the answer is preserved:

ans(x)=yes  if and only if  ans( f(x) )=yes

boolean solveX( instanceX x ) {
instanceY y = convert_X_to_Y(x); // f(x)

return solveY( y );

}

Function `convert_X_to_Y’ must run in polytime
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Remarks
• The mapping is “into” but does not need to be “onto”

• Many instances of class Y might not arise from any 
instance x of class X

f

X Y
f(X)

x

f(x)
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Definition: NP-hard

• Suppose that Z is some problem class 

• If we can (in polynomial time) reduce ANY
problem in NP to Z then we say that Z is NP-hard

• It means that ‘Z’ is ‘as bad as it gets’

• If ‘Z’ turns out to be in P, then all problems in NP are 
also in P, i.e. P=NP

• We can convert any problem within NP to ‘Z’

• Note: it does NOT need to be the case that Z itself in NP

• many problems are NP-hard because they are “far more powerful 
than NP”
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Next Steps?

• Using reduction we aim link the hardness of 
different problems:

‘X is NP-hard’ therefore ‘Y is NP-hard’

• ‘X’ can solve all problems in NP
therefore, also
‘Y’ can solve all problems in NP
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NP-complete

• A problem class X (such as SUBSET-SUM) is said to 
be NP-complete, if and only if both of the 
following are satisfied:
• X is in NP,   

• all instances of X can be solved in nondeterministic polynomial 
time

• membership of NP is usually demonstrated directly (and fairly 
easily)

• X is NP-hard
• all problems within NP (not just X) can be solved by converting 

them (in polytime!) to some instance of X

• this is usually done by showing (polytime) reduction from some 
known NP-complete problem to X
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Caution:

• Do not confuse  “NP-hard” and “NP-complete”

• A problem being NP-hard does not 
automatically mean it is NP-complete

• For most problem classes and results you see 
then it will be also complete, but it is not always 
true. 
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Starting chains of reductions

• The reductions needs a starting point!

• Cook & Levin (1971) proved that SAT is NP-hard
• SAT is clearly in NP

• Since then, people prove NP completeness by reduction chains 
starting from SAT

• The proof works by showing that 
• any polytime Non-deterministic (Turing) machine running in 

polytime converts to some polysize SAT formula

• existence of an accepting execution path of the NDTM 
corresponds to a satisfying assignment of the SAT formula
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Chaining between problems

• Consider NP-complete (NPC) problems

ALL NP
SAT       … NPC-2

Initial ‘base’
step (Cook-Levin)

Polytime 
reduction

…
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Chain reasoning

Given:

• Any problem in NP can be solved by conversion 
(in polytime) to some instance of NPC-1

• Any problem in NPC-1 can be solved by 
conversion (in polytime) to some instance of 
NPC-2

Then:

• Any problem in NP can be solved by conversion 
(in polytime) to some instance of NPC-2

The chains allow to reduce any NP-complete 
problem to any other NP-complete problem.
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CAUION: BAD ORDERING

• Suppose the reduction is ‘back-to-front’

ALL NP
NPC-1 Problem 2

Initial ‘base’
step (Cook-Levin)

BAD
Polytime 
reduction

…

We cannot 
deduce that 
Problem 2
solve all of 
NP
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Example:
Reducing from PART to SUBSET-SUM

• This means that we need to give a method to 
convert any instance of PART into some
instance of SUBSET-SUM (SSUM for short)

• The “any” and “some” are vital

• (Of course, it is implicit that the answer by using 
SUBSET-SUM should used to give the correct 
answer to PART.)
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Reducing PART to SUBSET-SUM

• Given 

boolean SSUM(int[] arr, int k)

• Implement

boolean PART(int[] arr)
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Reducing PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for( int i = 0 ; i < arr.length ; i++ ) {

sum += arr[i];
}

if ( sum %2 == 1 ) return false;
return SSUM(arr, sum/2);

}    
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Reducing PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for( int i = 0 ; i < arr.length ; i++ ) {

sum += arr[i];
}

if ( sum%2 == 1 ) return false;
return SSUM(arr, sum/2);

}    

What can we conclude?

Reduction from PART to SSUM 

shows

If SSUM is easy, then so is PART 
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Reducing from PART to SUBSET-SUM

boolean PART(int[] arr) {

int sum=0;
for( int i = 0 ; i < arr.length ; i++ ) {

sum += arr[i];
}

if ( k%2 == 1 ) return false;
return SSUM(arr, sum/2);

}    

What can we conclude?  

Reduction from PART to SSUM 

shows

If PART is NP-hard then SSUM is NP-hard
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Essence of NP-complete Problems

• Naïve and “sound and complete” algorithms are 
exponential time

• They are “guess and verify”

• Verification is fast, i.e. in P

• Theory: 

• “Guess” is encoded using “Non-determinism”

• Practice:

• “Guess” is encoded using “Heuristics”

• “Non-determinism” can be thought of as a 
“perfect heuristic” obtained from a (“magic”) 
“oracle”
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Expectations include:
• Know definitions of P and NP

• That, trivially, P is a subset of NP

• Understand the P = NP question:

• That it is currently unsolved

• Why it is important

• Definitions of NP-hard and NP-complete

• Reductions, in general 

• And how they relate “the difficulty of problems”

• That can, in poly-time

• Reduce “all NP” to SAT

• Reduce any problem in NP, to SAT, or any other NP-complete 
problem
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“Appendix”

• Some more NP-complete problems

• For each one you should check that it is in NP
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Graph Colouring (GC)

INSTANCE: 
an undirected graph G = (V,E)  with vertices V and edges E
an integer k

QUESTION 
Is there a legal colouring of G with k colours. I.e. can we 
assign a colour c(v) to every vertex v in V, such that for 
every edge, the nodes at the ends are different colours?

Usage: many usages. E.g. node is an exam, edge is that the 
two exams have a student in common, colour is the timeslot 
it is assigned to. Colouring corresponds to a legal timetable 
with no-one in two exams a the same time
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INDEPENDENT SET
INSTANCE: 

an undirected graph G
an integer k

QUESTION 
is there an independent vertex set of size k?  

I.e. is there a set of k vertices such that all no 
pair within the set have an edge between them?

Usage: (exercise)
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CLIQUE
INSTANCE: 

an undirected graph G

an integer k

QUESTION 

is there an clique of size k?  
I.e. is there a set of k vertices such that all pairs within 
the set have an edge between them?

Usage: Many uses. Finding a closely connected set of 
friends in a social network. Timetabling (exercise: why?)
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VERTEX COVER
INSTANCE: 

an undirected graph G
an integer k

QUESTION 
is there set of k vertices such that they cover all the 

edges of the graph? I.e. can we pick a set of vertices 
such that for all edges, at least one of the end vertices is 
in the set.

Many usages: E.g. facility location: 
• so everyone is close to a fire station
• so CCTV can see every corridor, 
• etc
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TSP(D)
Decision version of the TSP (Travelling Salesperson 

Problem)

INSTANCE: 
A graph G with distances on the edges
A target distance d

QUESTION:
Is there a tour of all the vertices with total sum of the 
edge lengths being at most d?

Usage: vehicle routing problems, delivery and collection 
systems
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Note: Optimisation vs. Decision

• Need to distinguish

• Decision Problem: 

• Simple yes/no answer

• Optimisation Problem

• Find a min or max value for some objective

• Complexity theory generally works in terms of 
Decision Problems  

• Conversion is simple: 

• Minimisation of f, becomes picking an maximum 
allowed value “k” and using the decision version 
“is there a solution with f < k”

• Binary search on k can then do the minimisation
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INTEGER PROGRAMMING
INSTANCE: 

A set of nonnegative integer variables, x[i]
A set of linear inequalities on the variables

QUESTION 
Is there an assignment of values such that all the 
inequalities are satisfied

Note: 
This is different: Why is it not “obvious” that the problem is 

in NP? Instead a difficult theorem is needed (Exercise. 
Hint: What is the size of an “answer”?)
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