G52MAL Machines and Their Languages Lecture 3 Non-deterministic Finite Automata (NFA)

Henrik Nilsson

University of Nottingham

Recap: Formal Definition of DFA

Formally, a *Deterministic Finite Automaton* or *DFA* is defined by a 5-tuple

 $(Q, \Sigma, \delta, q_0, F)$

where		
Q	:	Finite set of States
Σ	:	Alphabet (finite set of symbols)
$\delta \in Q \times \Sigma \to Q$:	Transition Function
$q_0 \in Q$:	Initial or Start State
$F \subseteq Q$:	Accepting (or Final) States

Recap: Extended Transition Function

The *Extended Transition Function* is defined on a state and a *word* (string of symbols) instead of on a single symbol.

For a DFA $A = (Q, \Sigma, \delta, q_0, F)$, the extended transition function is defined by:

$$\begin{split} \hat{\delta} &\in Q \times \Sigma^* \to Q \\ \hat{\delta}(q, \epsilon) &= q \\ \hat{\delta}(q, xw) &= \hat{\delta}(\delta(q, x), w) \end{split}$$

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

where $q \in Q$, $x \in \Sigma$, $w \in \Sigma^*$.

G52MALMachines and Their LanguagesLecture 3 – p.1/4

Recap: Language of a DFA

The *language* L(A) defined by a DFA A is the set or words *accepted* by the DFA. For a DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

the language is defined by

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

G52MALMachines and Their LanguagesLecture 3 – p.4/4