
G53CMP-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE

A LEVEL 3 MODULE, AUTUMN SEMESTER 2016–2017

COMPILERS

Time allowed TWO hours

Candidates may complete the front cover of their answer book and sign
their desk card but must NOT write anything else until the start of the

examination period is announced.

Answer ALL THREE questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first
language is not English may use a standard translation dictionary to

translate between that language and English provided that neither language
is the subject of this examination. Subject-specific translation directories

are not permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

DO NOT turn examination paper over until instructed to do so

G53CMP-E1 Turn Over

2 G53CMP-E1

Question 1

(a) Consider the following context-free grammar (CFG):

S → aABe

A → bcA | c

B → d

S, A, and B are nonterminal symbols, S is the start symbol, and a, b,
c, d, and e are terminal symbols.

Explain how a bottom-up (LR) parser would parse the string

abcbcbccde

according to this grammar by reducing it step by step to the start
symbol. Also state what the handle is for each step. (10)

(b) The DFA below recognizes the viable prefixes for the above CFG.

b

c
c

b

A

A B

d e

I0

I1

I2 I5

I3
I4

I6

I7

I8

I9
c

S • aABe
a

S a• ABe

A • bcA

A •c

S aA • Be
B •d

S aAB • e

A •b cA A •c B •d S •aABe

A •bc A
A • bcA
A • c

A •bcA

Show how an LR(0) shift-reduce parser parses the string abcbcbccde

by completing the following table (copy it to your answer book; do not
write on the examination paper):

State Stack Input Move

I0 ǫ abcbcbccde Shift
I1 a bcbcbccde Shift
...

...
...

...
S ǫ Done

(10)

(c) Explain shift/reduce and reduce/reduce conflicts in the context of LR
parsing. (5)

G53CMP-E1

3 G53CMP-E1

Question 2

The following is the grammar for a very simple expression language:

exp → exp and exp | exp or exp | not exp | tt | ff | (exp)

Here, exp is a non-terminal and and, or, not, tt, ff, (, and) are all termi-
nals, with and denoting logical conjunction, or denoting logical disjunction,
not denoting logical negation, tt and ff being literals denoting the truth
values true and false respectively, and parentheses used for grouping as usual.

The following is the central part of a Happy parser specification for this
grammar. We wish to implement an interpreter that directly evaluates a
parsed expression to a Boolean. The type of the semantic value for the non-
terminal exp is thus Bool:

exp :: { Bool }
exp : exp and exp { 1 }

| exp or exp { 2 }
| not exp { 3 }
| tt { 4 }
| ff { 5 }
| ’(’ exp ’)’ { 6 }

The grammar is ambiguous, but we assume that Happy’s features for spec-
ifying operator precedence and associativity are used to disambiguate as
necessary. The semantic actions for evaluating an expression have been left
out, indicated by boxed numbers (like 1).

(a) Complete the fragment above by providing suitable semantic actions
for evaluating the various forms of expressions. (6)

(b) We now wish to extend the language with a notion of let-bound vari-
ables. The Happy grammar is thus extended as follows:

| ident { 7 }
| let ident ’=’ exp in exp { 8 }

Here, ident, let, in, and = are all new terminals. For simplicity, the
semantic value of ident is a string; i.e., the name of the identifier.

Explain, in English, how to restructure the interpreter to handle let-
bound variables. In particular, what should the type of the semantic
value of the non-terminal exp be now? (9)

(c) Implement an interpreter for the extended expression language by pro-
viding suitable semantic actions for all productions (1 – 8) following
the idea you described in (b). (10)

G53CMP-E1 Turn Over

4 G53CMP-E1

Question 3

This questions concerns types and scope: both how they are captured for-
mally in a type system, and how they might be implemented.

(a) Consider the following expression language:

e → expressions:
| n natural numbers, n ∈ N

| x variables, x ∈ Name
| e = e equality test
| if e then e else e conditional

where Name is the set of variable names. The types are given by the
following grammar:

t → types:
| Nat natural numbers
| Bool Booleans

The ternary relation Γ ⊢ e : t says that expression e has type t in the
typing context Γ. It is defined by the following typing rules:

Γ ⊢ n : Nat (T-NAT)

x : t ∈ Γ
Γ ⊢ x : t (T-VAR)

Γ ⊢ e1 : Nat Γ ⊢ e2 : Nat
Γ ⊢ e1 = e2 : Bool

(T-EQ)

Γ ⊢ e1 : Bool Γ ⊢ e2 : t Γ ⊢ e3 : t
Γ ⊢ if e1 then e2 else e3 : t

(T-COND)

A typing context, Γ in the rules above, is a comma-separated sequence
of variable-name and type pairs, such as

x : Nat, y : Bool, z : Nat

or empty, denoted ∅. Typing contexts are extended on the right, e.g.
Γ, z : Nat, the membership predicate is denoted by ∈, and lookup is
from right to left, ensuring recent bindings hide earlier ones.

G53CMP-E1

5 G53CMP-E1

(i) Use the typing rules given above to formally prove that the ex-
pression

if x = 5 then a else b

has type Bool in the typing context

Γ1 = a : Bool, b : Bool, x : Nat

The proof should be given as a proof tree. (5)

(ii) The expression language defined above is to be extended with
let-bound variables; definition of named, possibly recursive, func-
tions; and function application as follows:

e → expressions:
.
| let var x = e in e variable definition
| let fun f(x :t) :t = e in e function definition
| e(e) function application

t → types:
.
| t → t function (arrow) type

Here, f is the syntactic category of function names (f ∈ Name).

Variable definition is not recursive: the let-bound variable is only
in scope in the body of the let-expression, not in its defining
expression. In contrast, the named function being defined is in
scope, along with the named formal argument, in the expression
defining the function, thus allowing for recursive functions.

For example, if we assume that the expression language has been
extended with basic arithmetic operations as well, the following
is a definition of the factorial function:

let fun fac(n : Nat) : Nat =

if n = 0 then 1 else n * fac(n - 1)

in

...

Provide a typing rule for each of the new expression constructs,
in the same style as the existing rules, reflecting the standard no-
tions of typed let-expressions and function application augmented
by the additional requirements set forth in the text above. (8)

G53CMP-E1 Turn Over

6 G53CMP-E1

(b) Consider the following code skeleton (note: nested procedures):

var a, b, c: Integer

proc P

var x, y, z: Integer

proc Q

var u, v: Bool

proc R

var w: Bool

begin ... Q() ... end

begin ... R() ... end

begin ... Q() ... end

begin ... P() ... end

The variables a, b, and c are global. The variables x, y, and z are local
to procedure P, as is procedure Q, which in turn has two local variables,
u and v, and a local procedure R. The latter has one local variable, w.
The notation P(), R(), etc. signifies a call to the named procedure.
Thus main calls P, P calls Q, Q calls R, and R calls Q (recursively).

Assume stack-based memory allocation with dynamic and static links.

(i) Show the layout of the activation records on the stack after the
main program has called procedure P. Explain how global and
local variables are accessed from P. (3)

(ii) Show the layout of the activation records on the stack after the
call sequence: P, Q, R, Q, R (that is, after main has called P, which
in turn has called Q, etc.). Explain how global variables, P’s vari-
ables, Q’s variables, and R’s own local variables are accessed from
the last activation of R. (9)

G53CMP-E1 End

