
www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

WhatsApp’s Secret Sauce
An Introduction to Erlang

Francesco Cesarini
 @francescoC

Founder & Technical Director @
Erlang Solutions

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

E R L A N G

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

PROGRAMMING LANGUAGE
ECOSYSTEMS HAVE TO BE:

PREDICTABLE
EASY TO USE
EASY TO MAINTAIN

WhatsApp Acquisition by Facebook

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

Who is using Erlang?

7

Complex

No down time

Scalable

Maintainable

Distributed

 vs

Time to Market

Telecom Applications

Cellular
PLMN

PSTN/
ISDN

Data/ IP
Network
s

CATV

Services

Past
Single-service networks

Present
Multiservice networks/client server

Backbone
Network

Access Access Access

Content Content

Control
Communication
applications

Media
Gateways

The Ancestors
Functional

languages like ML or
Miranda

Languages like
SmallTalk,

 Ada, Modula or
Chill

Logical
languages
like Prolog

E R L A N G

The Ancestors
Functional

languages like ML or
Miranda

Languages like
SmallTalk,

 Ada, Modula or
Chill

Logical
languages
like Prolog

E R L A N G

R U B Y E L I X I R

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Functional programming
language

High abstraction level
Pattern matching

Concise readable programs

Erlang Highlights: Factorial

-module(ex1).
-export([factorial/1]).

factorial(0) ->
 1;
factorial(N) when N >= 1 ->
 N * factorial(N-1).

Implementation

Factorial using Recursion

Eshell V5.0.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> ex1:factorial(6).
720

Definition

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

Erlang Highlights: High-level Constructs
QuickSort using List Comprehensions

Eshell V5.0.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:qsort([7,5,3,8,1]).
[1,3,5,7,8]

module(ex2).
-export([qsort/1]).

qsort([Head|Tail]) ->
 First = qsort([X || X <- Tail, X =< Head]),
 Last = qsort([Y || Y <- Tail, Y > Head]),
 First ++ [Head] ++ Last;
qsort([]) ->
[]. "all objects Y

taken from the list
Tail, where
Y > Head"

Erlang Highlights: High-level Constructs

<< SourcePort:16, DestinationPort:16, SequenceNumber:32,
 AckNumber:32, DataOffset:4, _Reserved:4, Flags:8,
 WindowSize:16, Checksum:16, UrgentPointer:16,
 Payload/binary>> = Segment,

OptSize = (DataOffset - 5)*32,
<< Options:OptSize, Message/binary >> = Payload,
<< CWR:1, ECE:1, URG:1, ACK:1, PSH:1,
 RST:1, SYN:1, FIN:1>> = <<Flags:8>>,

%% Can now process the Message according to the
%% Options (if any) and the flags CWR, ..., FIN

etc…

Parsing a TCP packet using the Bit
Syntax

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Either transparent or
explicit concurrency

Light-weight processes
Highly scalable

activity(Joe,75,1024)

Erlang Highlights: Concurrency
Creating a new process using spawn

-module(ex3).
-export([activity/3]).

activity(Name,Pos,Size) ->
 …………

Pid = spawn(ex3,activity,[Joe,75,1024])

Erlang Highlights: Concurrency
Processes communicate by asynchronous
message passing

Pid ! {data,12,13}

receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Simple and consistent
error recovery

Supervision hierarchies
"Program for the correct case"

Erlang Highlights: Robustness

Cooperating processes may be linked together

using
spawn_link(…,…,…)
or
link(Pid)

Erlang Highlights: Robustness

Cooperating processes may be linked together

using
spawn_link(…,…,…)
or
link(Pid)

Erlang Highlights: Robustness
Exit signals can be trapped and received as messages

receive
 {‘EXIT’,Pid,...} -> ...
end

Erlang Highlights: Robustness
Robust systems can be built by layering

Workers

Supervisors

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Explicit or transparent
distribution

Network-aware
runtime system

Erlang Highlights: Distribution

Network

B ! Msg

Erlang Run-Time
System

Erlang Run-Time
System

C ! Msg

B C A

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Easily change code in a
running system

Enables non-stop operation
Simplifies testing

Erlang Highlights: Hot Code Swap

Version 2

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

SMP support provides linear
scalability out of the box
thanks to its no shared

memory approach to concurrency.

Multicore Erlang

Erlang
VM

Scheduler #N
Run queue

Scheduler #2
Run queue

Scheduler #1
Run queue

Migration
logic

Erlang Highlights
Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP
OTP hides the complexity of

concurrent systems into reusable
libraries, making scalability and

reliability easy to deal with.

I wrote my Erlang system in 4
weeks!

The Myths of Erlang….
Is it Documented?

Is the developer supporting it?

What visibility does support staff have into what is going on?
▹ SNMP
▹ Live Tracing
▹ Audit Trails
▹ Statistics
▹ CLI / HTTP Interface

How much new code was actually written?

Upgrades during runtime are
easy!

The Myths of Erlang….

Yes, it is easy for

▹ Simple patches
▹ Adding functionality without changing the state

Non backwards compatible changes need time

▹ Database schema changes
▹ State changes in your processes
▹ Upgrades in distributed environments

Test, Test, Test

▹ A great feature when you have the manpower!

We achieved 99.9999999
availability!

The Myths of Erlang….
“As a matter of fact, the network performance has been so reliable that there is almost a risk that

our field engineers do not learn maintenance skills”

Bert Nilsson, Director
NGS-Programs Ericsson

Ericsson Contact, Issue 19 2002

The Myths of Erlang….

99,999 (Five Nines) is a more like it!
▹ Achieved at a fraction of the effort of Java & C++

Upgrades are risky!
Reliability and Resilience need to be in your initial design!
Non Software related issues
▹ Power Outages
▹ Network Failures, Firewall Configurations
▹ Hardware Faults

Erlang: It’s Happening!

Elixir: It’s Happening!

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

“ Erlang is a beacon language in that it
more clearly than any other language
demonstrates the benefits of
concurrency- oriented programming.

-Simon Peyton-Jones

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

ERLANG/OTP
MASTER CLASSES
Video master classes on

○ Functional Programming
 Concurrent Programming
 OTP Behaviors

with Joe Armstrong,
 Francesco Cesarini &
 Simon Thompson

http://goo.gl/mhXRI7 or google
Erlang Master Classes

http://goo.gl/mhXRI7

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

ERLANG BOOKS

Programming Erlang – 2nd ed.
 Software for a Concurrent World
 Joe Armstrong
Learn You Some Erlang for Great Good
 Fred Hebert
Erlang Programming
 A Concurrent Approach to Software
 Development
 Francesco Cesarini & Simon Thompson
Designing for Scalability with Erlang/OTP
 Implementing Robust, Available and
 Fault Tolerant Systems
 Francesco Cesarini & Steve Vinoski

www.erlang-solutions.com
© 1999-2020 Erlang Solutions Ltd

Questions?

Francesco Cesarini
@francescoC
Founder & Technical Director @
Erlang Solutions

