# COMP4075: Lecture 5 Purely Functional Data Structures 

Henrik Nilsson

University of Nottingham, UK

## Purely Functional Data structures (1)

Purely functional data structures: What? Why?

## Purely Functional Data structures (1)

Purely functional data structures: What? Why?
Standard implementations of many data structures rely on imperative update. But:

## Purely Functional Data structures (1)

Purely functional data structures: What? Why?
Standard implementations of many data structures rely on imperative update. But:

- In a pure functional setting, we need pure alternatives.


## Purely Functional Data structures (1)

Purely functional data structures: What? Why?
Standard implementations of many data structures rely on imperative update. But:

- In a pure functional setting, we need pure alternatives.
- In concurrent or distributed settings, side effects are not your friends. Purely functional structures can thus be very helpful!


## Purely Functional Data structures (1)

Purely functional data structures: What? Why?
Standard implementations of many data structures rely on imperative update. But:

- In a pure functional setting, we need pure alternatives.
- In concurrent or distributed settings, side effects are not your friends. Purely functional structures can thus be very helpful!
- Generally interesting to explore different approaches.


## Purely Functional Data structures (2)

Key difference:

## Purely Functional Data structures (2)

Key difference:

- Imperative data structures are ephemeral: a single copy gets mutated whenever the structure is updated.


## Purely Functional Data structures (2)

Key difference:

- Imperative data structures are ephemeral: a single copy gets mutated whenever the structure is updated.
- Purely functional data structures are persistent: a new copy is created whenever the structure is updated, leaving old copies intact. (Common sub-parts can be shared.)


## Purely Functional Data structures (3)

Linked list:


After insert, if ephemeral:


## Purely Functional Data structures (4)

Linked list:


After insert, if persistent:


## Purely Functional Data structures (5)

This lecture draws from:
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

We will look at some examples of how numerical representations can be used to derive purely functional data structures.

## Numerical Representations (1)

Strong analogy between lists and the usual representation of natural numbers:

```
data List a
    = Nil
    | Cons a (List a)
tail (Cons _ xs) = xs
```


append Nil ys = ys plus Zero $n=n$

```
data Nat
    = Zero
    | Succ Nat
pred (Succ n) = n
plus (Succ m) n =
    Succ (plus m n)
```


## Numerical Representations (2)

This analogy can be taken further for designing container structures because:

- inserting an element resembles incrementing a number
- combining two containers resembles adding two numbers
etc.
Thus, representations of natural numbers with certain properties induce container types with similar properties. Called Numerical Representations.


## Random Access Lists

We will consider Random Access Lists in the following. Signature:
data RList a
empty :: RList a
isEmpty :: RList a -> Bool
cons
:: a -> RList a -> RList a
head : : RList a -> a
tail
lookup
:: RList a -> RList a


## Positional Number Systems (1)

- A number is written as a sequence of digits $b_{0} b_{1} \ldots b_{m-1}$, where $b_{i} \in D_{i}$ for a fixed family of digit sets given by the positional system.
- $b_{0}$ is the least significant digit, $b_{m-1}$ the most significant digit (note the ordering).
- Each digit $b_{i}$ has a weight $w_{i}$. Thus:

$$
\text { value }\left(b_{0} b_{1} \ldots b_{m-1}\right)=\sum_{0}^{m-1} b_{i} w_{i}
$$

where the fixed sequence of weights $w_{i}$ is given by the positional system.

## Positional Number Systems (2)

- A number is written written in base $B$ if $w_{i}=B^{i}$ and $D_{i}=\{0, \ldots, B-1\}$.
- The sequence $w_{i}$ is usually, but not necessarily, increasing.
- A number system is redundant if there is more than one way to represent some numbers (disallowing trailing zeroes).
- A representation of a positional number system can be dense, meaning including zeroes, or sparse, eliding zeroes.


## Exercise 1: Positional Number Systems

Suppose $w_{i}=2^{i}$ and $D_{i}=\{0,1,2\}$. Give three different ways to represent 17.

## Exercise 1: Solution

- 10001, since value $(10001)=1 \cdot 2^{0}+1 \cdot 2^{4}$
- 1002, since value $(1002)=1 \cdot 2^{0}+2 \cdot 2^{3}$
- 1021, since value $(1021)=1 \cdot 2^{0}+2 \cdot 2^{2}+1 \cdot 2^{3}$
- 1211, since
value $(1211)=1 \cdot 2^{0}+2 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}$


## From Positional System to Container

Given a positional system, a numerical representation may be derived as follows:

- for a container of size $n$, consider a representation $b_{0} b_{1} \ldots b_{m-1}$ of $n$,
- represent the collection of $n$ elements by a sequence of trees of size $w_{i}$ such that there are $b_{i}$ trees of that size.

For example, given the positional system of exercise 1, a container of size 17 might be represented by 1 tree of size 1, 2 trees of size 2, 1 tree of size 4, and 1 tree of size 8.

## What Kind of Trees?

The kind of tree should be chosen depending on needed sizes and properties. Two possibilities:

- Complete Binary Leaf Trees

```
data Tree a = Leaf a
    | Node (Tree a) (Tree a)
```

Sizes: $2^{n}, n \geq 0$

- Complete Binary Trees

$$
\begin{aligned}
\text { data Tree } a & =\text { Leaf } a \\
& \mid \text { Node (Tree a) a (Tree a) }
\end{aligned}
$$

Sizes: $2^{n+1}-1, n \geq 0$
(Balance has to be ensured separately.)

## Example: Complete Binary Leaf Tree

Size $2^{3}=8$ :


## Example: Complete Binary Tree

Size $2^{4}-1=15$ :


## Binary Random Access Lists (1)

Binary Random Access Lists are induced by

- the usual binary representation, i.e. $w_{i}=2^{i}$, $D_{i}=\{0,1\}$
- complete binary leaf trees

Thus:

```
data Tree a = Leaf a
    | Node Int (Tree a) (Tree a)
data Digit a = Zero | One (Tree a)
type RList a = [Digit a]
```

The Int field keeps track of tree size for speed.

## Binary Random Access Lists (2)

## Example: Binary Random Access List of size 5:



## Binary Random Access Lists (3)

The increment function on dense binary numbers:

```
inc [] = [One]
inc (Zero : ds) = One : ds
inc (One : ds) = Zero : inc ds -- Carry
```


## Binary Random Access Lists (4)

Inserting an element first in a binary random access list is analogous to inc:

```
cons :: a -> RList a -> RList a
cons x ts = consTree (Leaf x) ts
consTree :: Tree a -> RList a -> RList a
consTree t [] = [One t]
consTree t (Zero : ts) = (One t : ts)
consTree t (One t' : ts) =
    Zero : consTree (link t t') ts
```


## Binary Random Access Lists (5)

The utility function link joins two equally sized trees:
-- t1 and t2 are assumed to be the same size link t1 t2 $=$ Node ( 2 * size t1) t1 t2

## Binary Random Access Lists (6)

Example: Result of consing element onto list of size 5:


## Binary Random Access Lists (7)

Time complexity:

- cons, head, tail, perform $O(1)$ work per digit, thus $O(\log n)$ worst case.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.


## Binary Random Access Lists (7)

Time complexity:

- cons, head, tail, perform $O(1)$ work per digit, thus $O(\log n)$ worst case.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Time complexity for cons, head, tail disappointing: can we do better?

## Skew Binary Numbers (1)

Skew Binary Numbers:

- $w_{i}=2^{i+1}-1\left(\right.$ rather than $\left.2^{i}\right)$
- $D_{i}=\{0,1,2\}$

Representation is redundant. But we obtain a canonical form if we insist that only the least significant non-zero digit may be 2.

Note: The weights correspond to the sizes of complete binary trees.

## Skew Binary Numbers (2)

Theorem: Every natural number $n$ has a unique skew binary canonical form.
Proof sketch. By induction on $n$.

- Base case: the case for 0 is direct.


## Skew Binary Numbers (3)

- Inductive case. Assume $n$ has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$


## Skew Binary Numbers (3)

- Inductive case. Assume $n$ has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$
- If the least significant non-zero digit is smaller than 2 , then $n+1$ has a unique skew binary representation obtained by adding 1 to the least significant digit $b_{0}$.


## Skew Binary Numbers (3)

- Inductive case. Assume $n$ has a unique skew binary representation $b_{0} b_{1} \ldots b_{m-1}$
- If the least significant non-zero digit is smaller than 2 , then $n+1$ has a unique skew binary representation obtained by adding 1 to the least significant digit $b_{0}$.
- If the least significant non-zero digit $b_{i}$ is 2 , then note that $1+2\left(2^{i+1}-1\right)=2^{i+2}-1$.
Thus $n+1$ has a unique skew binary representation obtained by setting $b_{i}$ to 0 and adding 1 to $b_{i+1}$.


## Exercise 2: Skew Binary Numbers

Give the canonical skew binary representation for 31, 30, 29, and 28.

## Exercise 2: Skew Binary Numbers

Give the canonical skew binary representation for 31, 30, 29, and 28.

Solution: 00001, 0002, 0021, 0211

## Inc. Sparse Skew Binary Number

Assume a sparse skew binary representation of the natural numbers type Nat = [Int], where the integers represent the weight of each non-zero digit, in increasing order, except that the first two may be equal indicating smallest non-zero digit is 2 .
Function to increment a number:

```
inc :: Nat -> Nat
```

inc (w1 : w2 : ws)

| $\mid$ w1 $==w 2$ | $=w 1 * 2+1: w s$ |
| ---: | :--- |
| inc ws | $=1:$ ws |

Note: Constant time operation!

## Skew Binary Random Access Lists (1)

data Tree $a=$ Leaf a $\mid$ Node (Tree a) a (Tree a) type RList a = [(Int, Tree a)]
empty : : RList a
empty = []
cons : : a -> RList a -> RList a
cons $x((w 1, t 1):(w 2, t 2): w t s) \mid w 1==w 2=$ (wi * $2+1$, Node ti x th) : wt
cons $x$ wets $=((1$, Leaf $x)$ : wets)

## Skew Binary Random Access Lists (2)

Example: Consing onto list of size 5 :
cons

## Skew Binary Random Access Lists (3)

Example: Consing onto list of size 6:


## Skew Binary Random Access Lists (4)

Example: Consing onto list of size 7:


## Skew Binary Random Access Lists (5)

head : : RList a -> a
head ((_, Leaf x) : _) $=x$
head ( (_, Node _ x _) : _) = x
tail :: RList a -> RList a
tail ((_, Leaf _): wts) = wts
tail ((w, Node t1 _ t2) : wts) = $\left(w^{\prime}, t 1\right):\left(w^{\prime}, t 2\right): ~ w t s$
where

$$
\mathrm{w}^{\prime}=\mathrm{w} \text { 'div' } 2
$$

Note: partial operations.

## Skew Binary Random Access Lists (6)

lookup :: Int -> RList a -> a
lookup i ((w, t) : wts)

$$
\begin{array}{ll}
\text { | } \mathrm{i}<\mathrm{w} & =\text { lookupTree } \mathrm{i} \text { w } \mathrm{t} \\
\text { | otherwise } & =\text { lookup (i }-\mathrm{w}) \text { wts }
\end{array}
$$

lookupTree :: Int -> Int -> Tree a -> a
lookupTree _ (Leaf x ) $=\mathrm{x}$
lookupTree i w (Node t1 x t2)

$$
\begin{array}{ll}
\left\lvert\, \begin{array}{ll}
\mathrm{i}==0 & \mathrm{x} \\
\mathrm{I} & \mathrm{i}=\mathrm{w}^{\prime} \\
\text { | otherwise } & =\text { lookupTree }(\mathrm{i}-1) \mathrm{w}^{\prime} \mathrm{t} 1 \\
\text { lookupTree }\left(\mathrm{i}-\mathrm{w}^{\prime}-1\right) \mathrm{w}^{\prime} \mathrm{t} 2
\end{array}\right.
\end{array}
$$ where

$$
\mathrm{W}^{\prime}=\mathrm{w} \text { 'div' } 2
$$

## Skew Binary Random Access Lists (7)

Time complexity:

- cons, head, tail: $O(1)$.
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.


## Skew Binary Random Access Lists (7)

Time complexity:

- cons, head, tail: O(1).
- lookup and update take $O(\log n)$ to find the right tree, and then $O(\log n)$ to find the right element in that tree, so $O(\log n)$ worst case overall.

Okasaki:
"Although there are better implementations of lists, and better implementations of (persistent) arrays, none are better at both."

