COMP4075: Lecture 6 Type Classes

Henrik Nilsson

University of Nottingham, UK

Haskell Overloading (1)

What is the type of $(==)$?
E.g. the following both work:

$$
\begin{aligned}
& 1==2 \\
& \prime a^{\prime}==b^{\prime} b^{\prime}
\end{aligned}
$$

I.e., (==) can be used to compare both numbers and characters.

Maybe (==) :: $a \rightarrow a \rightarrow$ Bool?
No!!! Cannot work uniformly for arbitrary types!

Haskell Overloading (3)

Moreover, some types do not in general admit a decidable equality. E.g. functions (when their domain is infinite).

Similar remarks apply to many other types. E.g.:

- We may want to be able to add numbers of any kind.
- But to add properly, we must understand what we are adding.
- Not every type admits addition.

class $E q$ a where

$$
(==):: a \rightarrow a \rightarrow \text { Bool }
$$

$(==)$ is not a function, but a method of the type class Eq. It's type signature is:

$$
(==):: E q a \Rightarrow a \rightarrow a \rightarrow \text { Bool }
$$

$E q a$ is a class constraint. It says that that the equality method works for any type belonging to the type class $E q$.

Haskell Overloading (4)

Idea:

- Introduce the notion of a type class: a set of types that support certain related operations.
- Constrain those operations to only work for types belonging to the corresponding class.
- Allow a type to be made an instance of (added to) a type class by providing type-specific implementations of the operations of the class.

Various types can be made instances of a type class like $E q$ by providing implementations of the class methods for the type in question:
instance $E q$ Int where

$$
x==y=\text { primEqInt } x y
$$

instance Eq Char where

$$
x==y=\text { primEqChar } x y
$$

Instances of $E q$ (2)

Suppose we have a data type:
data Answer $=$ Yes \mid No \mid Unknown
We can make Answer an instance of $E q$ as follows:

$$
\begin{array}{rlrl}
\text { instance } \begin{array}{ll}
\text { Eq } & \text { Answer where } \\
\text { Yes } & ==\text { Yes }
\end{array} & =\text { True } \\
\text { No } & ==\text { No } & =\text { True } \\
\text { Unknown } & ==\text { Unknown } & =\text { True } \\
& & ==- & \text { False }
\end{array}
$$

Yes, for any type a that is already an instance of $E q$:

$$
\begin{aligned}
& \text { instance }(E q a) \Rightarrow E q(\text { Tree a) where } \\
& \text { Leaf a1 }==\text { Leaf } a 2 \quad=a 1==a 2 \\
& \text { Node t1l t1r }==\text { Node } t 2 l t 2 r=t 1 l==t 2 l \\
& \& \& t 1 r==t 2 r \\
& \text { - == _ False }
\end{aligned}
$$

Note that ($==$) is used at type a (whatever that is) when comparing $a 1$ and $a 2$, while the use of (==) for comparing subtrees is a recursive call.

Consider:

$$
\begin{aligned}
\text { data Tree } a= & \text { Leaf } a \\
& \mid \text { Node }(\text { Tree a) (Tree a) }
\end{aligned}
$$

Can Tree be made an instance of $E q$?

Instance declarations are often obvious and mechanical. Thus, for certain built-in classes (notably Eq, Ord, Show), Haskell provides a way to automatically derive instances, as long as

- the data type is sufficiently simple
- we are happy with the standard definitions Thus, we can do:

$$
\begin{aligned}
\text { data Tree } a & =\text { Leaf } a \\
& \mid \text { Node }(\text { Tree } a)(\text { Tree } a) \\
& \text { deriving } E q
\end{aligned}
$$

Derived Instances (2)

Class Hierarchy

GHC provides many additional possibilities. With the extension-XGeneralizedNewtypeDeriving, a new type defined using newtype can "inherit" any of the instances of the representation type:
newtype Time $=$ Time Int deriving Num
With the extension -xStandaloneDeriving, instances can be derived separately from a type definition (even in a separate module):
deriving instance Eq Time
deriving instance $E q a \Rightarrow E q$ (Tree a)

Haskell vs. 00 Overloading (1)

A method, or overloaded function, may thus be understood as a family of functions where the right one is chosen depending on the types.
A bit like OO languages like Java. But the underlying mechanism is quite different and much more general. Consider read:

$$
\text { read }::(\text { Read } a) \Rightarrow \text { String } \rightarrow a
$$

Note: overloaded on the result type! A method that converts from a string to any other type in class Read!

Type classes form a hierarchy. E.g.:

$$
\text { class } E q a \Rightarrow \text { Ord } a \text { where }
$$

$$
(<=):: a \rightarrow a \rightarrow \text { Bool }
$$

$E q$ is a superclass of $O r d$; i.e., any type in Ord must also be in $E q$.
\square
Haskell vs. 00 Overloading (2)

```
> let xs = [1,2,3]:: [ Int]
```

> let xs = [1,2,3]:: [Int]
> let ys =[1,2,3]::[Double]
> let ys =[1,2,3]::[Double]
>xs
>xs
[1,2,3]
[1,2,3]
>ys
>ys
[1.0, 2.0, 3.0]
[1.0, 2.0, 3.0]
> (read "42":xs)
> (read "42":xs)
[42, 1, 2,3]
[42, 1, 2,3]
>(read"42":ys)
>(read"42":ys)
[42.0, 1.0, 2.0, 3.0]

```
[42.0, 1.0, 2.0, 3.0]
```


Haskell vs. 00 Overloading (3)

Taking Java as a typical OO example:

- Classes and interfaces define sets of methods that elements of a type must support.
- Through generics, classes can be parametrised on types that can be bounded by classes and interfaces, a little like constraints in Haskell's class/instance declarations.
- However, the overloading is always on the object; i.e. effectively the first argument to a method:

```
object.method(arg1, arg2, ...)
```


Implementation (2)

An expression like
$1==2$
is essentially translated into
(==) primEqInt 12

Implementation (1)

The class constraints represent extra implicit arguments that are filled in by the compiler. These arguments are (roughly) the functions to use.

Thus, internally (==) is a higher order function with three arguments:

$$
(==) e q F x y=e q F x y
$$

So one way of understanding a type like

$$
(==):: E q a \Rightarrow a \rightarrow a \rightarrow \text { Bool }
$$

is that $E q$ a corresponds to an extra implicit argument.

The implicit argument corresponds to a so called directory, or tuple/record of functions, one for each method of the type class in question.

Implementation (4)

A rough illustration of the idea:

$$
\begin{gathered}
\text { class Foo } a \text { where } \\
\text { fie }:: a \rightarrow \text { Bool } \\
\text { fum }:: a \rightarrow \text { Int }
\end{gathered}
$$

The types of methods fie and fum:

$$
\begin{aligned}
& \text { fie }:: \text { Foo } a \Rightarrow a \rightarrow \text { Bool } \\
& \text { fum }:: \text { Foo } a \Rightarrow a \rightarrow \text { Int }
\end{aligned}
$$

class $E q a$ where

$$
(==),(/=):: a \rightarrow a \rightarrow \text { Bool }
$$

class $(E q a) \Rightarrow$ Ord a where
compare $:: a \rightarrow a \rightarrow$ Ordering $(<),(<=),(>=),(>):: a \rightarrow a \rightarrow$ Bool $\max , \min :: a \rightarrow a \rightarrow a$
class Show a where

$$
\text { show }:: a \rightarrow \text { String }
$$

Implementation (5)

As Foo have two methods, the dictionary needs to carry two functions. If a pair were to be used for this purpose, the actual implementations would be something along the lines:

$$
\begin{aligned}
& \text { fie }::(a \rightarrow \text { Bool, } a \rightarrow \text { Int }) \rightarrow a \rightarrow \text { Bool } \\
& \text { fie dict } x=(\text { fst dict }) x \\
& \text { fie }::(a \rightarrow \text { Bool }, a \rightarrow \text { Int }) \rightarrow a \rightarrow \text { Bool } \\
& \text { fie dict } x=(\text { snd dict }) x
\end{aligned}
$$

class Num a where

$$
\begin{aligned}
& (+),(-),(*):: a \rightarrow a \rightarrow a \\
& \text { negate } \quad:: a \rightarrow a \\
& \text { abs, signum }:: a \rightarrow a \\
& \text { fromInteger }:: \text { Integer } \rightarrow a
\end{aligned}
$$

class Num $a \Rightarrow$ Fractional a where
(/) $\quad:: a \rightarrow a \rightarrow a$
recip $:: a \rightarrow a$
fromRational :: Rational $\rightarrow a$

Some Basic Haskell Classes (3)

Quiz: What is the type of a numeric literal like 42 ?
What about 1.23 ? Why?
Haskell's numeric literals are overloaded:

- 42 means fromInteger 42
- 1.23 means fromRational (133 \% 100)

Thus:
$42::$ Num $a \Rightarrow a$
$1.23::$ Fractional $a \Rightarrow a$

A Typing Conundrum (2)

The list is expanded into:

```
[fromInteger 1,
    [fromInteger 2, fromInteger 3]]
```

Thus, if there were some type t for which [t] were an instance of Num, the 1 would be an overloaded literal of that type, matching the type of the second element of the list.

Normally there are no such instances, so what almost certainly is a mistake will be caught. But the error message is rather confusing.

Application: Automatic Differentiation

- Automatic Differentiation: method for augmenting code so that derivative(s) computed along with main result.
- Purely algebraic method: arbitrary code can be handled
- Exact results
- But no separate, self-contained representation of the derivative.

Automatic Differentiation: Key Idea

Consider a code fragment:

$$
\begin{aligned}
& z 1=x+y \\
& z 2=x * z 1
\end{aligned}
$$

Suppose x^{\prime} and y^{\prime} are the derivatives of x and y w.r.t. a common variable. Then the code can be augmented to compute the derivatives of $z 1$ and $z 2$:

$$
\begin{aligned}
& z 1=x+y \\
& z 1^{\prime}=x^{\prime}+y^{\prime} \\
& z 2=x * z 1 \\
& z \text { 2 }^{\prime}=x^{\prime} * z 1+x * z 1^{\prime}
\end{aligned}
$$

Functional Automatic Differentiation (1)

Introduce a new numeric type C : value of a continuously differentiable function at a point along with all derivatives at that point:

$$
\begin{aligned}
& \text { data } C=C \text { Double } C \\
& \text { valC }\left(C_{-} \quad a_{-}\right)=a \\
& \operatorname{der} C\left(C_{-}^{\prime}\right)=x^{\prime}
\end{aligned}
$$

Functional Automatic Differentiation (2)

Constants and the variable of differentiation:

```
zeroC :: C
zeroC = C 0.0 zeroC
constC :: Double }->
constC a = C a zero C
dVarC :: Double }->
dVarC a = C a (constC 1.0)
```


Functional Automatic Differentiation (3)

Part of numerical instance:

```
instance Num C where
    (C a x 
    (C a x ' ) - (C b y')=C (a-b) (x' - y')
    x@(Calos})*y@(Cby y')
        C(a*b) (x'*y+x*\mp@subsup{y}{}{\prime})
    fromInteger n = constC (fromInteger n)
```


Functional Automatic Differentiation (5)

Of course, we're not limited to picking just one point. Let tvals be a list of points of interest:

$$
[3 * t * t+7 \mid \text { tval } \leftarrow \text { tvals, let } t=d \operatorname{Var} C \text { tval }]
$$

Or we can define a function:

$$
\begin{aligned}
& y:: \text { Double } \rightarrow C \\
& y \text { tval }=3 * t * t+7 \\
& \quad \text { where } \\
& \quad \quad t=d \operatorname{Var} C \text { tval }
\end{aligned}
$$

Reading

- Jerzy Karczmarczuk. Functional differentiation of computer programs. Higher-Order and Symbolic Computation, 14(1):35-57, March 2001.

