COMP4075: Lecture 8
Introduction to Monads
Henrik Nilsson

University of Nottingham, UK

"Shall I be pure or impure?" (Wadler, 1992)

- Absence of effects
- facilitates understanding and reasoning
- makes lazy evaluation viable
- allows choice of reduction order, e.g. parallel
- enhances modularity and reuse.
- Effects (state, exceptions, ...) can
- help making code concise
- facilitate maintenance
- improve the efficiency.
- The BIG advantage of pure functional programming is
"everything is explicit;"
i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.
- The BIG problem with pure functional programming is
"everything is explicit."
Can add a lot of clutter, make it hard to maintain code

Answer to Conundrum: Monads (1)

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type $M A$ denotes a computation of an object of type A.
- Thus we shall be both pure and impure, whatever takes our fancy!
- Monads originated in Category Theory.
- Adapted by
- Moggi for structuring denotational semantics
- Wadler for structuring functional programs

Answer to Conundrum: Monads (2)

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great flexibility in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of real effects such as
- I/O
- mutable state

Example 1: A Simple Evaluator

$$
\begin{aligned}
& \text { data } \operatorname{Exp}=\text { Lit Integer } \\
& \text { | Add Exp Exp } \\
& \text { | Sub Exp Exp } \\
& \text { | Mul Exp Exp } \\
& \text { | Div Exp Exp } \\
& \text { eval :: Exp } \rightarrow \text { Integer } \\
& \text { eval (Lit } n)=n \\
& \text { eval }(\text { Add e1 e2 })=\text { eval e1 }+ \text { eval e2 } \\
& \text { eval }(\text { Sub e1 e2 })=\text { eval e1 - eval e2 } \\
& \text { eval }(\text { Mul e1 e2) }=\text { eval e1 } * \text { eval e2 } \\
& \text { eval (Div e1 e2) = eval e1'div' eval e2 }
\end{aligned}
$$

This Lecture

Pragmatic introduction to monads:

- Effectful computations
- Identifying a common pattern
- Monads as a design pattern

Making the Evaluator Safe (1)

$$
\begin{aligned}
& \text { data Maybe } a=\text { Nothing } \mid \text { Just a } \\
& \text { safeEval }:: \text { Exp } \rightarrow \text { Maybe Integer } \\
& \text { safeEval }(\text { Lit } n) \quad=\text { Just } n \\
& \text { safeEval }(\text { Add e1 e2 })= \\
& \text { case safeEval e1 of } \\
& \quad \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just } n 1 \rightarrow \text { case safeEval e2 of } \\
& \text { Nothing } \rightarrow \text { Nothing } \\
& \text { Just n2 } \rightarrow \text { Just }(n 1+n 2)
\end{aligned}
$$

Making the Evaluator Safe (2)

```
safeEval (Sub e1 e2) =
    case safeEval e1 of
        Nothing }->\mathrm{ Nothing
        Just n1 }->\mathrm{ case safeEval e2 of
            Nothing }->\mathrm{ Nothing
            Just n2 }->\mathrm{ Just (n1 - n2)
```


Making the Evaluator Safe (3)

```
safeEval (Mul e1 e2) =
    case safeEval e1 of
        Nothing }->\mathrm{ Nothing
        Just n1 }->\mathrm{ case safeEval e2 of
            Nothing }->\mathrm{ Nothing
            Just n2 }->\mathrm{ Just (n1*n2)
```

Clearly a lot of code duplication! Can we factor out a common pattern?
We note:

- Sequencing of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.

Sequencing Evaluations

> evalSeq $::$ Maybe Integer
> $\quad \rightarrow$ (Integer \rightarrow Maybe Integer $)$
> \rightarrow Maybe Integer
> evalSeq ma $f=$ case $m a$ of
> \quad Nothing \rightarrow Nothing
> Just $a \rightarrow f a$

Exercise 1: Refactoring safeEval

Rewrite safeEval, case Add, using evalSeq:

```
safeEval (Add e1 e2) =
case safeEval e1 of
Nothing -> Nothing
Just n1 ->
case safeEval e2 of
Nothing -> Nothing
Just n2 -> Just (n1 + n2)
evalSeq ma f =
case ma of
Nothing -> Nothing
Just a -> f a
```


Refactored Safe Evaluator (1)

```
safeEval :: Exp }->\mathrm{ Maybe Integer
```

safeEval :: Exp }->\mathrm{ Maybe Integer
safeEval (Lit n) = Just n
safeEval (Lit n) = Just n
safeEval (Add e1 e2) =
safeEval (Add e1 e2) =
safeEval e1 'evalSeq' \lambdan1 }
safeEval e1 'evalSeq' \lambdan1 }
safeEval e2 'evalSeq` \lambdan2 } safeEval e2 'evalSeq` \lambdan2 }
Just (n1 + n2)
Just (n1 + n2)
safeEval (Sub e1 e2) =
safeEval (Sub e1 e2) =
safeEval e1 'evalSeq' \lambdan1 }
safeEval e1 'evalSeq' \lambdan1 }
safeEval e2 'evalSeq' \lambdan2 }
safeEval e2 'evalSeq' \lambdan2 }
Just (n1 - n2)

```
    Just (n1 - n2)
```


Exercise 1: Solution

safeEval :: Exp \rightarrow Maybe Integer
safeEval $($ Add e1 e2 $)=$ evalSeq (safeEval e1)

$$
(\lambda n 1 \rightarrow \text { evalSeq }(\text { safeEval e2 })
$$

$$
(\lambda n \mathscr{2} \rightarrow \operatorname{Just}(n 1+n \mathscr{2})))
$$

or
safeEval :: Exp \rightarrow Maybe Integer safeEval $($ Add e1 e2) $)=$ safeEval e1'evalSeq' $\lambda n 1 \rightarrow$ safeEval e2 'evalSeq' λ n2 \rightarrow Just $(n 1+n 2)$

Refactored Safe Evaluator (2)

```
safeEval(Mul e1 e2) =
    safeEval e1 'evalSeq' \lambdan1 }
    safeEval e2 'evalSeq` \lambdan2 }
    Just (n1 * n2)
safeEval(Div e1 e2) =
    safeEval e1 'evalSeq' \lambdan1 }
    safeEval e2 'evalSeq' \lambdan2 }
    if n2 \equiv0
    then Nothing
    else Just (n1 `div`n2)
```


Maybe Viewed as a Computation (2)

Successful computation of a value:

```
mbReturn \(:: a \rightarrow\) Maybe \(a\)
\(m b\) Return \(=\) Just
```

Sequencing of possibly failing computations:

```
\(m b S e q::\) Maybe \(a \rightarrow(a \rightarrow\) Maybe \(b) \rightarrow\) Maybe \(b\)
mbSeq \(m a f=\) case \(m a\) of
    Nothing \(\rightarrow\) Nothing
    Just \(a \rightarrow f a\)
```


Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as denoting a computation of a value of type a that may fail.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. failure is an effect, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

Failing computation:
$m b F a i l::$ Maybe a
$m b F a i l=$ Nothing

The Safe Evaluator Revisited

safeEval :: Exp \rightarrow Maybe Integer
safeEval $($ Lit $n)=$ mbReturn n
safeEval $($ Add e1 e2 $)=$
safeEval e1'mbSeq' $\lambda n 1 \rightarrow$
safeEval e2 'mbSeq' $\lambda n 2 \rightarrow$ mbReturn $(n 1+n 2)$
...
safeEval $($ Div e1 e2 $)=$ safeEval e1 'mbSeq' $\lambda n 1 \rightarrow$ safeEval e2 'mbSeq' $\lambda n 2 \rightarrow$ if $n 2 \equiv 0$ then $m b$ Fail else mbReturn ($n 1$ ‘div‘ $n \mathcal{Z}$)))

Observations

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?

Example 2: Numbering Trees

```
data Tree \(a=\) Leaf \(a \mid\) Node (Tree a) (Tree a)
numberTree :: Tree \(a \rightarrow\) Tree Int
numberTree \(t=f s t(n t A u x t 0)\)
    where
        ntAux :: Tree \(a \rightarrow\) Int \(\rightarrow\) (Tree Int, Int)
        \(n t A u x\) (Leaf _) \(n=(\) Leaf \(n, n+1)\)
        ntAux (Node t1 t2) \(n=\)
        let \(\left(t 1^{\prime}, n^{\prime}\right)=n t A u x t 1 n\)
        in let \(\left(t 2^{\prime}, n^{\prime \prime}\right)=n t A u x\) t2 \(n^{\prime}\)
            in (Node \(t 1^{\prime} t 2^{\prime}, n^{\prime \prime}\) )
```


Stateful Computations (1)

- A stateful computation consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:

$$
\text { type } S a=\text { Int } \rightarrow(a, \text { Int })
$$

(Only Int state for the sake of simplicity.)

- A value (function) of type $S a$ can now be viewed as denoting a stateful computation computing a value of type a.

Stateful Computations (2)

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. state updating is an effect, implicitly affecting subsequent computations. (As we would expect.)

Stateful Computations (4)

Reading and incrementing the state

$$
\begin{aligned}
& \text { (For ref.: } S a=\operatorname{Int} \rightarrow(a, \text { Int })) \\
& \quad \text { sInc }:: S \text { Int } \\
& \quad \text { sInc }=\lambda n \rightarrow(n, n+1)
\end{aligned}
$$

Stateful Computations (3)

Computation of a value without changing the state (For ref.: $S a=$ Int $\rightarrow(a$, Int)):

$$
\begin{aligned}
& \text { sReturn }:: a \rightarrow S a \\
& \text { sReturn } a=\lambda n \rightarrow(a, n)
\end{aligned}
$$

Sequencing of stateful computations:

$$
\begin{aligned}
& \text { sSeq :: } S a \rightarrow(a \rightarrow S b) \rightarrow S b \\
& \text { sSeq sa } f=\lambda n \rightarrow \\
& \quad \operatorname{let}\left(a, n^{\prime}\right)=\text { sa } n \\
& \text { in } f a n^{\prime}
\end{aligned}
$$

Numbering trees revisited

```
data Tree \(a=\) Leaf \(a \mid\) Node (Tree \(a)(\) Tree \(a)\)
numberTree :: Tree \(a \rightarrow\) Tree Int
numberTree \(t=f s t(n t A u x t 0)\)
    where
        ntAux :: Tree \(a \rightarrow S\) (Tree Int)
        ntAux (Leaf _) =
        sInc 'sSeq' \(\lambda n \rightarrow\) sReturn (Leaf \(n\) )
        ntAux (Node t1 t2) \(=\)
        \(n t A u x t 1\) 'sSeq' \(\lambda t 1^{\prime} \rightarrow\)
        \(n t A u x t 2\) 'sSeq' \(\lambda t 2^{\prime}\) ' \(\rightarrow\)
        sReturn (Node t1' t2')
```


Observations

- The "plumbing" has been captured by the abstractions.
- In particular:
- counter no longer manipulated directly
- no longer any risk of "passing on" the wrong version of the counter!

Monads in Functional Programming

A monad is represented by:

- A type constructor

$$
M:: * \rightarrow *
$$

$M T$ represents computations of value of type T.

- A polymorphic function

$$
\text { return }:: a \rightarrow M a
$$

for lifting a value to a computation.

- A polymorphic function

$$
(\gg):: M a \rightarrow(a \rightarrow M b) \rightarrow M b
$$

for sequencing computations.

Exercise 2: Solution

$$
\begin{aligned}
& \text { join }:: M(M a) \rightarrow M a \\
& \text { join } m m=m m \gg i d \\
& \text { fmap }::(a \rightarrow b) \rightarrow M a \rightarrow M b \\
& \text { fmap } f m=m \gg \text { return } \circ f \\
& (\gg=):: M a \rightarrow(a \rightarrow M b) \rightarrow M b \\
& m \gg f=\text { join }(\text { fmap } f m)
\end{aligned}
$$

The Identity Monad can be understood as representing effect-free computations:
type $I a=a$

1. Provide suitable definitions of return and (>>).
2. Verify that the monad laws hold for your definitions.

Monad laws

Additionally, the following laws must be satisfied:

$$
\begin{aligned}
\text { return } x \gg f & =f x \\
m \gg \text { return } & =m \\
(m \gg=f) \gg g & =m \gg=(\lambda x \rightarrow f x \gg=g)
\end{aligned}
$$

I.e., return is the right and left identity for (\gg), and (\gg) is associative.

$$
\begin{aligned}
& \text { return }:: a \rightarrow I a \\
& \text { return }=i d \\
& (\gg):: I a \rightarrow(a \rightarrow I b) \rightarrow I b \\
& m \gg f=f m
\end{aligned}
$$

(Or: $(\gg)=$ flip (\$))
Simple calculations verify the laws, e.g.:

$$
\begin{aligned}
\text { return } x \gg f & =i d x \gg f \\
& =x \gg=f \\
& =f x
\end{aligned}
$$

Reading

- Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL'92), 1992.

- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In International Summer School on Applied Semantics 2000, Caminha, Portugal, 2000.
- All About Monads.
http://www.haskell.org/all_about_monads

