COMP4075: Lecture 8 *Introduction to Monads*

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 8 – p.1/37

The BIG advantage of pure functional programming is

The *BIG* advantage of *pure* functional programming is
 "everything is explicit;"
 i.e., flow of data manifest, no side effects.

The *BIG* advantage of *pure* functional programming is
 "everything is explicit;"
 i.e., flow of data manifest, no side effects.

Makes it a lot easier to understand large programs.

The *BIG* advantage of *pure* functional programming is

"everything is explicit;"

i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

The BIG problem with pure functional programming is

 The BIG advantage of pure functional programming is

"everything is explicit;"

i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

 The *BIG* problem with *pure* functional programming is "everything is explicit."

The *BIG* advantage of *pure* functional programming is

"everything is explicit;"

i.e., flow of data manifest, no side effects. Makes it a lot easier to understand large programs.

 The BIG problem with pure functional programming is

"everything is explicit."

Can add a lot of clutter, make it hard to maintain code

Conundrum

"Shall I be pure or impure?" (Wadler, 1992)

Conundrum

"Shall I be pure or impure?" (Wadler, 1992)

- Absence of effects
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.

Conundrum

"Shall I be pure or impure?" (Wadler, 1992)

- Absence of effects
 - facilitates understanding and reasoning
 - makes lazy evaluation viable
 - allows choice of reduction order, e.g. parallel
 - enhances modularity and reuse.
- Effects (state, exceptions, ...) can
 - help making code concise
 - facilitate maintenance
 - improve the efficiency.

 Monads bridges the gap: allow effectful programming in a pure setting.

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an object of type A.

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an object of type A.
- Thus we shall be both pure and impure, whatever takes our fancy!

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an object of type A.
- Thus we shall be both pure and impure, whatever takes our fancy!
- Monads originated in Category Theory.

- Monads bridges the gap: allow effectful programming in a pure setting.
- Key idea: Computational types: an object of type MA denotes a computation of an object of type A.
- Thus we shall be both pure and impure, whatever takes our fancy!
- Monads originated in Category Theory.
- Adapted by
 - Moggi for structuring denotational semantics

OMP4075: Lecture 8 – p.4/37

Wadler for structuring functional programs

Monads

 promote disciplined use of effects since the type reflects which effects can occur;

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great *flexibility* in tailoring the effect structure to precise needs;

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great *flexibility* in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;

Monads

- promote disciplined use of effects since the type reflects which effects can occur;
- allow great *flexibility* in tailoring the effect structure to precise needs;
- support changes to the effect structure with minimal impact on the overall program structure;
- allow integration into a pure setting of *real* effects such as
 - I/O
 - mutable state.

This Lecture

Pragmatic introduction to monads:

- Effectful computations
- Identifying a common pattern
- Monads as a design pattern

Example 1: A Simple Evaluator

data Exp = Lit IntegerAdd Exp ExpSub Exp Exp Mul Exp Exp Div Exp Exp $eval :: Exp \rightarrow Integer$ eval(Lit[n)] = n $eval (Add \ e1 \ e2) = eval \ e1 + eval \ e2$ $eval (Sub \ e1 \ e2) = eval \ e1 - eval \ e2$ $eval (Mul \ e1 \ e2) = eval \ e1 * eval \ e2$ $eval (Div \ e1 \ e2) = eval \ e1 \ 'div' \ eval \ e2$

COMP4075: Lecture 8 – p.7/3

Making the Evaluator Safe (1)

data Maybe $a = Nothing \mid Just a$ $safeEval :: Exp \rightarrow Maybe Integer$ safeEval (Lit n) = Just n $safeEval (Add \ e1 \ e2) =$ case safeEval e1 of Nothing \rightarrow Nothing Just $n1 \rightarrow \mathbf{case} \ safeEval \ e2 \ \mathbf{of}$ Nothing \rightarrow Nothing Just $n2 \rightarrow Just (n1 + n2)$

Making the Evaluator Safe (2)

 $safeEval (Sub \ e1 \ e2) =$ $case \ safeEval \ e1 \ of$ $Nothing \rightarrow Nothing$ $Just \ n1 \rightarrow case \ safeEval \ e2 \ of$ $Nothing \rightarrow Nothing$ $Just \ n2 \rightarrow Just \ (n1 - n2)$

Making the Evaluator Safe (3)

 $safeEval (Mul \ e1 \ e2) =$ $case \ safeEval \ e1 \ of$ $Nothing \rightarrow Nothing$ $Just \ n1 \rightarrow case \ safeEval \ e2 \ of$ $Nothing \rightarrow Nothing$ $Just \ n2 \rightarrow Just \ (n1 * n2)$

Making the Evaluator Safe (4)

 $safeEval (Div \ e1 \ e2) =$ case safeEval e1 of Nothing \rightarrow Nothing Just $n1 \rightarrow \mathbf{case} \ safeEval \ e2 \ \mathbf{of}$ Nothing \rightarrow Nothing Just $n2 \rightarrow$ if $n2 \equiv 0$ then Nothing else Just $(n1 \, div \, n2)$

Clearly a lot of code duplication! Can we factor out a common pattern?

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

 Sequencing of evaluations (or computations).

Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- Sequencing of evaluations (or computations).
- If one evaluation fails, fail overall.

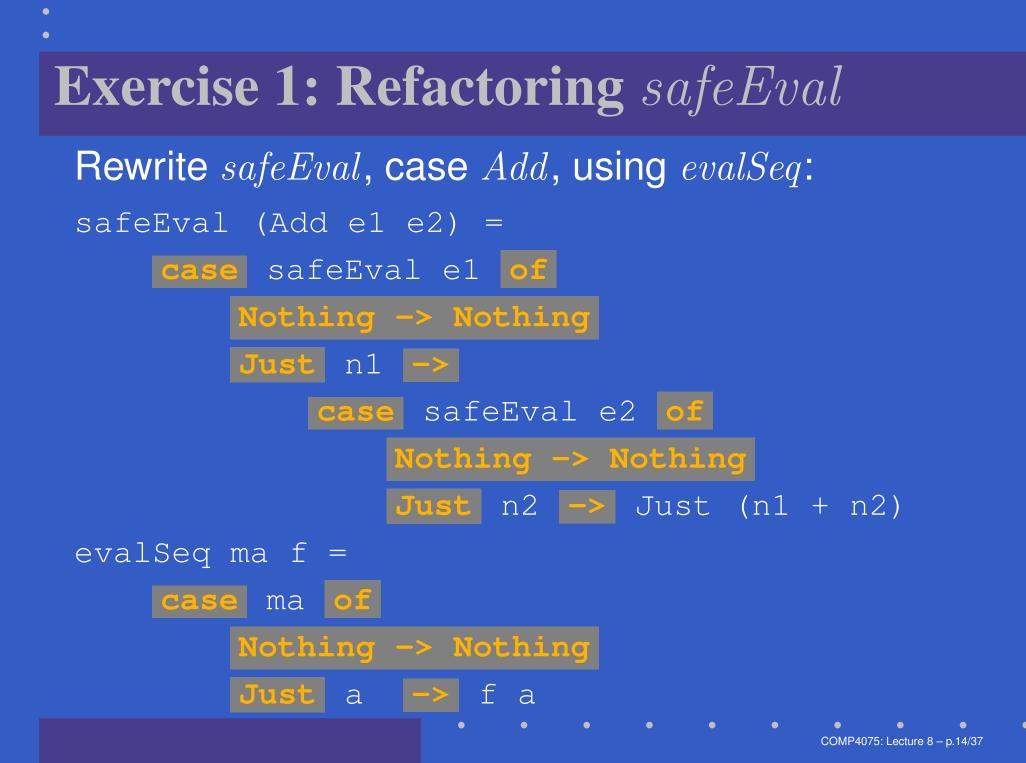
Clearly a lot of code duplication! Can we factor out a common pattern?

We note:

- Sequencing of evaluations (or computations).
- If one evaluation fails, fail overall.
- Otherwise, make result available to following evaluations.

Sequencing Evaluations

evalSeq :: Maybe Integer $\rightarrow (Integer \rightarrow Maybe Integer)$ $\rightarrow Maybe Integer$ evalSeq ma f = case ma of $Nothing \rightarrow Nothing$ $Just a \rightarrow f a$



Exercise 1: Solution

 $safeEval :: Exp \rightarrow Maybe \ Integer$ $safeEval \ (Add \ e1 \ e2) =$ $evalSeq \ (safeEval \ e1)$ $(\lambda n1 \rightarrow evalSeq \ (safeEval \ e2)$ $(\lambda n2 \rightarrow Just \ (n1 + n2)))$

Or

 $safeEval :: Exp \rightarrow Maybe \ Integer$ $safeEval \ (Add \ e1 \ e2) =$ $safeEval \ e1 \ `evalSeq` \ \lambda n1 \rightarrow$ $safeEval \ e2 \ `evalSeq` \ \lambda n2 \rightarrow$ $Just \ (n1 + n2)$

COMP4075: Lecture 8 – p.15/37

Refactored Safe Evaluator (1)

 $safeEval :: Exp \rightarrow Maybe Integer$ safeEval (Lit n) = Just n $safeEval (Add \ e1 \ e2) =$ safeEval e1 'evalSeq' $\lambda n1 \rightarrow$ safeEval e2 'evalSeq' $\lambda n2 \rightarrow$ Just (n1 + n2) $safeEval (Sub \ e1 \ e2) =$ safeEval e1 'evalSeq' $\lambda n1 \rightarrow$ safeEval e2 'evalSeq' $\lambda n2 \rightarrow$ Just (n1 - n2)

Refactored Safe Evaluator (2)

 $safeEval (Mul \ e1 \ e2) =$ safeEval e1 'evalSeq' $\lambda n1 \rightarrow$ safeEval e2 'evalSeq' $\lambda n2 \rightarrow$ Just (n1 * n2) $safeEval (Div \ e1 \ e2) =$ safeEval e1 'evalSeq' $\lambda n1 \rightarrow$ safeEval e2 'evalSeq' $\lambda n2 \rightarrow$ if $n2 \equiv 0$ then Nothing else Just $(n1 \, div \, n2)$

Maybe Viewed as a Computation (1)

 Consider a value of type Maybe a as denoting a *computation* of a value of type a that *may fail*.

Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as denoting a *computation* of a value of type a that *may fail*.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.

Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as denoting a *computation* of a value of type a that *may fail*.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. *failure is an effect*, implicitly affecting subsequent computations.

Maybe Viewed as a Computation (1)

- Consider a value of type Maybe a as denoting a *computation* of a value of type a that *may fail*.
- When sequencing possibly failing computations, a natural choice is to fail overall once a subcomputation fails.
- I.e. *failure is an effect*, implicitly affecting subsequent computations.
- Let's generalize and adopt names reflecting our intentions.

Maybe Viewed as a Computation (2)

Successful computation of a value:

 $mbReturn :: a \rightarrow Maybe \ a$ mbReturn = Just

Sequencing of possibly failing computations:

 $\begin{array}{l} mbSeq :: Maybe \ a \to (a \to Maybe \ b) \to Maybe \ b \\ mbSeq \ ma \ f = {\bf case} \ ma \ {\bf of} \\ Nothing \to Nothing \\ Just \ a \ \to f \ a \end{array}$

Maybe Viewed as a Computation (3)

Failing computation:

 $mbFail :: Maybe \ a$ mbFail = Nothing

The Safe Evaluator Revisited

 $safeEval :: Exp \rightarrow Maybe Integer$ safeEval (Lit n) = mbReturn n safeEval (Add e1 e2) = $safeEval e1 `mbSeq` \lambda n1 \rightarrow$ $safeEval e2 `mbSeq` \lambda n2 \rightarrow$ mbReturn (n1 + n2)

 $safeEval (Div \ e1 \ e2) =$ $safeEval \ e1 \ `mbSeq` \ \lambda n1 \rightarrow$ $safeEval \ e2 \ `mbSeq` \ \lambda n2 \rightarrow$ $if \ n2 \equiv 0 \ then \ mbFail \ else \ mbReturn \ (n1 \ `div` \ ndt)$

Example 2: Numbering Trees

data Tree $a = Leaf \ a \mid Node \ (Tree \ a) \ (Tree \ a)$ numberTree :: Tree $a \rightarrow Tree \ Int$ numberTree $t = fst \ (ntAux \ t \ 0)$ where $ntAux \ :: Tree \ a \rightarrow Int \rightarrow (Tree \ Int, Int)$

 $ntAux (Leaf _) n = (Leaf n, n + 1)$ ntAux (Node t1 t2) n = let (t1', n') = ntAux t1 n in let (t2', n'') = ntAux t2 n'in (Node t1' t2', n'')

 Repetitive pattern: threading a counter through a sequence of tree numbering computations.

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

- Repetitive pattern: threading a counter through a sequence of tree numbering computations.
- It is very easy to pass on the wrong version of the counter!

Can we do better?

 A stateful computation consumes a state and returns a result along with a possibly updated state.

- A stateful computation consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:

type $S \ a = Int \rightarrow (a, Int)$

(Only *Int* state for the sake of simplicity.)

- A stateful computation consumes a state and returns a result along with a possibly updated state.
- The following type synonym captures this idea:

type $S \ a = Int \rightarrow (a, Int)$

(Only *Int* state for the sake of simplicity.)

 A value (function) of type S a can now be viewed as denoting a stateful computation computing a value of type a.

 When sequencing stateful computations, the resulting state should be passed on to the next computation.

- When sequencing stateful computations, the resulting state should be passed on to the next computation.
- I.e. state updating is an effect, implicitly affecting subsequent computations. (As we would expect.)

Computation of a value without changing the state (For ref.: $S \ a = Int \rightarrow (a, Int)$):

 $sReturn :: a \to S \ a$ $sReturn \ a = ???$

Computation of a value without changing the state (For ref.: $S \ a = Int \rightarrow (a, Int)$):

 $sReturn :: a \to S \ a$ $sReturn \ a = \lambda n \to (a, n)$

Computation of a value without changing the state (For ref.: $S \ a = Int \rightarrow (a, Int)$):

 $sReturn :: a \to S \ a$ $sReturn \ a = \lambda n \to (a, n)$

Sequencing of stateful computations:

 $sSeq :: S \ a \to (a \to S \ b) \to S \ b$ $sSeq \ sa \ f = ???$

Computation of a value without changing the state (For ref.: $S \ a = Int \rightarrow (a, Int)$):

 $sReturn :: a \to S \ a$ $sReturn \ a = \lambda n \to (a, n)$

Sequencing of stateful computations:

$$sSeq :: S \ a \to (a \to S \ b) \to S \ b$$
$$sSeq \ sa \ f = \lambda n \to$$
$$let \ (a, n') = sa \ n$$
$$in \ f \ a \ n'$$

Reading and incrementing the state (For ref.: $S \ a = Int \rightarrow (a, Int)$):

> sInc :: S Int $sInc = \lambda n \rightarrow (n, n + 1)$

Numbering trees revisited

data Tree $a = Leaf \ a \mid Node \ (Tree \ a) \ (Tree \ a)$ $numberTree :: Tree \ a \rightarrow Tree \ Int$ $numberTree \ t = fst \ (ntAux \ t \ 0)$ where $ntAux :: Tree \ a \to S \ (Tree \ Int)$ $ntAux (Leaf _) =$ sInc 'sSeq' $\lambda n \rightarrow sReturn$ (Leaf n) $ntAux (Node \ t1 \ t2) =$ $ntAux \ t1 \ sSeq' \ \lambda t1' \rightarrow$ $ntAux \ t2 \ sSeq' \ \lambda t2' \rightarrow$ sReturn (Node t1' t2')

The "plumbing" has been captured by the abstractions.

- The "plumbing" has been captured by the abstractions.
- In particular:
 - counter no longer manipulated directly
 - no longer any risk of "passing on" the wrong version of the counter!

 Both examples characterized by sequencing of effectful computations.

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations

- Both examples characterized by sequencing of effectful computations.
- Both examples could be neatly structured by introducing:
 - A type denoting computations
 - A function constructing an effect-free computation of a value
 - A function constructing a computation by sequencing computations
- In fact, both examples are instances of the general notion of a MONAD.

Monads in Functional Programming

A monad is represented by:

A type constructor

 $M::*\to *$

M T represents computations of value of type *T*.
A polymorphic function *return* :: *a* → *M a*

for lifting a value to a computation.

A polymorphic function

 $(\gg) :: M \ a \to (a \to M \ b) \to M \ b$

for sequencing computations.

Exercise 2: *join* and *fmap*

Equivalently, the notion of a monad can be captured through the following functions:

 $return :: a \to M \ a$

 $join \quad :: (M \ (M \ a)) \to M \ a$

fmap :: $(a \rightarrow b) \rightarrow M \ a \rightarrow M \ b$

join "flattens" a computation, *fmap* "lifts" a function to map computations to computations.

Define *join* and *fmap* in terms of (\gg) (and *return*), and (\gg) in terms of *join* and *fmap*. (\gg) :: $M \ a \rightarrow (a \rightarrow M \ b) \rightarrow M \ b$

Exercise 2: Solution

 $join :: M (M a) \to M a$ $join mm = mm \gg id$ $fmap :: (a \to b) \to M a \to M b$ $fmap f m = m \gg return \circ f$ $(\gg) :: M a \to (a \to M b) \to M b$ $m \gg f = join (fmap f m)$

Monad laws

Additionally, the following *laws* must be satisfied:

 $return \ x \gg f = f \ x$ $m \gg return = m$ $(m \gg f) \gg g = m \gg (\lambda x \to f \ x \gg g)$ I.e., return is the right and left identity for (>>), and (>>) is associative.

COMP4075: Lecture 8 – p.34/37

Exercise 3: The Identity Monad

The *Identity Monad* can be understood as representing *effect-free* computations:

type $I \ a = a$

1. Provide suitable definitions of return and (\gg) .

2. Verify that the monad laws hold for your definitions.

Exercise 3: Solution

 $return :: a \to I \ a$ return = id $(\gg) :: I \ a \to (a \to I \ b) \to I \ b$ $m \gg f = f \ m$

 $(Or: (\gg) = flip (\$))$

Simple calculations verify the laws, e.g.:

$$return \ x \gg f = id \ x \gg f$$
$$= x \gg f$$
$$= f x$$

Reading

- Philip Wadler. The Essence of Functional Programming. *Proceedings of the 19th ACM Symposium on Principles of Programming Languages* (POPL'92), 1992.
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on Applied Semantics 2000*, Caminha, Portugal, 2000.
- All About Monads. http://www.haskell.org/all_about_monads