COMP4075: Lecture 9

Monads in Haskell

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 9 - p.1/3

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by a *Type Class*. In principle (but not quite from GHC 7.8 onwards):

class Monad m where

return ::
$$a \to m \ a$$

(\gg) :: $m \ a \to (a \to m \ b) \to m \ b$

Allows names of the common functions to be overloaded and sharing of derived definitions.

This Lecture

- Monads in Haskell
- The Haskell Monad Class Hierarchy
- Some Standard Monads and Library Functions

COMP4075: Lecture 9 - p.2/3

Monads in Haskell (2)

The Haskell monad class has two further methods with default definitions:

(≫) ::
$$m \ a \to m \ b \to m \ b$$

 $m \gg k = m \gg \lambda_{-} \to k$
 $fail :: String \to m \ a$
 $fail \ s = error \ s$

(However, fail will likely be moved into a separate class MonadFail in the future.)

The Maybe Monad in Haskell

instance Monad Maybe where return = JustNothing $\gg _ = Nothing$

 $(Just\ x) \gg f = f\ x$

COMP4075: Lecture 9 - p.5/3

The Monad Type Class Hierarhy (2)

For example, fmap can be defined in terms of \gg and return, demonstrating that a monad is a functor:

$$fmap \ f \ m = m \gg \lambda x \rightarrow return \ (f \ x)$$

A consequence of this class hierarchy is that to make some T an instance of Monad, an instance of T for both Functor and Applicative must also be provided.

Note: Not a mathematical necessity, but a result of how these notions are defined in Haskell at present. E.g. monads can be understood in isolation.

The Monad Type Class Hierarhy (1)

Monads are mathematically related to two other notions:

- Functors
- Applicative Functors (or just Applicatives)

Every monad is an applicative functor, and every applicative functor (and thus monad) is a functor.

Class hierarchy:

```
class Functor f where...
class Functor f \Rightarrow Applicative f where...
class Applicative m \Rightarrow Monad m where...
```

COMP4075: Lecture 9 - p.6/37

Applicative Functors (1)

An applicative functor is a functor with application, providing operations to:

- embed pure expressions (pure), and
- sequence computations and combine their results (<>>)

```
class Functor f \Rightarrow Applicative f where

pure :: a \rightarrow f a

(\ll) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b

(\ll) :: f a \rightarrow f b \rightarrow f b

(\ll) :: f a \rightarrow f b \rightarrow f a
```

Applicative Functors (2)

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result:
 - The **structure** of a computation is static.
 - Scope for running computations in parallel.
 - Whether the computations actually can be carried in parallel depends on what the specific effects of the applicative in question are.

COMP4075: Lecture 9 - p.9/37

Instances of Applicative

instance Applicative [] where
$$pure \ x = [x]$$
 $fs \iff xs = [f \ x \mid f \leftarrow fs, x \leftarrow xs]$

 ${\bf instance}\ Applicative\ Maybe\ {\bf where}$

Applicative Functors (3)

Laws:

$$pure id \iff v = v$$

$$pure (\circ) \iff u \iff v \iff w = u \iff (v \iff w)$$

$$pure f \iff pure x = pure (f x)$$

$$u \iff pure y = pure (\$y) \iff u$$

Default definitions:

```
u \gg v = pure \ (const \ id) \ll u \ll v
u \ll v = pure \ const \ll u \ll v
```

COMP4075: Lecture 9 - p.10/37

COMP4075: Lecture 9 - p.12/37

Class Alternative

The class *Alternative* is a monoid on applicative functors:

```
class Applicative f \Rightarrow Alternative f where empty :: f \ a (<|>) :: f \ a \rightarrow f \ a \rightarrow f \ a some :: f \ a \rightarrow f \ [a] many :: f \ a \rightarrow f \ [a] some \ v = pure \ (:) <*> v <*> many \ v many \ v = some \ v <|> pure \ []
```

 $<\mid>$ can be understood as "one or the other", some as "at least one", and many as "zero or more".

Instances of Alternative

instance Alternative [] where empty = [] (<|>) = (++)

instance Alternative Maybe where

empty = Nothing

Nothing $< \mid > r = r$

l $<|>_= l$

COMP4075: Lecture 9 - p.13/37

Example: Applicative Parser (2)

Syntax for a language fragment:

 $command \rightarrow if expr then command else command$ $| begin \{ command ; \} end$

Abstract syntax:

 $\mathbf{data} \ Command = If \ Expr \ Command \ Command$ $\mid \ Block \ [Command]$

Recognising terminals:

 $kwd, symb :: String \rightarrow Parser$ ()

Example: Applicative Parser (1)

Applicative functors are frequently used in the context of parsing combinators. In fact, that is where their origin lies.

A *Parser* computation allows reading of input, fails if input cannot be parsed, and supports trying alternatives:

instance Applicative Parser where...
instance Alternative Parser where...

COMP4075: Lecture 9 - p.14/37

Example: Applicative Parser (3)

Applicative Functors and Monads

A requirement is return = pure.

In fact, the *Monad* class provides a default definition of *return* defined that way:

```
class Applicative m \Rightarrow Monad \ m where return :: a \rightarrow m \ a return = pure (\gg) :: m \ a \rightarrow (a \rightarrow m \ b) \rightarrow m \ b
```

COMP4075: Lecture 9 - p.17/37

Solution: Functor **Instance**

instance Functor S where $fmap \ f \ sa = S \$ \lambda s \rightarrow$ let $(a,s') = unS \ sa \ s$ in $(f \ a,s')$

Exercise: A State Monad in Haskell

Recall that a type $Int \rightarrow (a, Int)$ can be viewed as a state monad.

Haskell 2010 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

newtype
$$S$$
 $a = S \{unS :: (Int \rightarrow (a, Int))\}$

Thus: $unS :: S \ a \rightarrow (Int \rightarrow (a, Int))$

Provide a *Functor*, *Applicative*, and *Monad* instance for *S*.

COMP4075: Lecture 9 - p.18/37

Solution: Applicative **Instance**

instance Applicative S where

pure
$$a = S \$ \lambda s \rightarrow (a, s)$$

 $sf \ll sa = S \$ \lambda s \rightarrow$
let
 $(f, s') = unS \ sf \ s$
in
 $unS \ (fmap \ f \ sa) \ s'$

COMP4075: Lecture 9 - p.19/37

COMP4075: Lecture 9 - p.20/37

Solution: *Monad* **Instance**

instance Monad S where

$$m \gg f = S \$ \lambda s \rightarrow$$

let $(a, s') = unS \ m \ s$
in $unS \ (f \ a) \ s'$

(Using the default definition return = pure.)

COMP4075: Lecture 9 - p.21/3

The Reader Monad

Computation in an environment:

instance
$$Monad\ ((\rightarrow)\ e)$$
 where $return\ a = const\ a$ $m \gg f = \lambda e \to f\ (m\ e)\ e$ $getEnv::((\rightarrow)\ e)\ e$ $getEnv = id$

The List Monad

Computation with many possible results, "nondeterminism":

```
instance Monad [] where return \ a = [a] m \gg f = concat \ (map \ f \ m) fail \ s = []
```

Example:

Result:

$$x \leftarrow [1,2] \qquad [(1,'a'),(1,'b'), y \leftarrow ['a','b'] \qquad (2,'a'),(2,'b')]$$

$$return (x,y)$$

COMP4075: Lecture 9 - p.22/37

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

```
fail :: String \rightarrow Maybe \ a
fail \ s = Nothing
catch :: Maybe \ a \rightarrow Maybe \ a \rightarrow Maybe \ a
m1 'catch' m2 =
\mathbf{case} \ m1 \ \mathbf{of}
Just \ \_ \ \to m1
Nothing \ \to m2
```

Monad-specific Operations (2)

Typical operations on a state monad:

```
set :: Int \rightarrow S ()
set a = S \ (\lambda_{-} \rightarrow ((), a))
get :: S Int
get = S (\lambda s \rightarrow (s, s))
```

Moreover, need to "run" a computation. E.g.:

$$runS :: S \ a \to a$$

$$runS \ m = fst \ (unS \ m \ 0)$$

COMP4075: Lecture 9 - p.25/37

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value:

 $\begin{array}{c} \mathbf{do} \\ exp_1 \\ exp_2 \\ return \ exp_3 \end{array}$

is syntactic sugar for

$$exp_1 \gg \lambda_- \rightarrow exp_2 \gg \lambda_- \rightarrow return \ exp_3$$

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

 \mathbf{do} $a \leftarrow exp_1$

 $b \leftarrow exp_2$ $return \ exp_3$

is syntactic sugar for

 $exp_1 \gg \lambda a \rightarrow exp_2 \gg \lambda b \rightarrow return \ exp_3$

Note: a in scope in exp_2 , a and b in exp_3 .

COMP4075: Lecture 9 - p.26/37

The do-notation (3)

A let-construct is also provided:

do

 $\begin{array}{c} \mathbf{let} \ a = exp_1 \\ b = exp_2 \\ return \ exp_3 \end{array}$

is equivalent to

do

 $\begin{array}{l} a \leftarrow return \ exp_1 \\ b \leftarrow return \ exp_2 \\ return \ exp_3 \end{array}$

Numbering Trees in do-notation

```
numberTree t = runS (ntAux t)

where

ntAux :: Tree \ a \rightarrow S (Tree Int)

ntAux (Leaf \_) = do

n \leftarrow get

set \ (n+1)

return \ (Leaf \ n)

ntAux \ (Node \ t1 \ t2) = do

t1' \leftarrow ntAux \ t1

t2' \leftarrow ntAux \ t2

return \ (Node \ t1' \ t2')
```

COMP4075: Lecture 9 = n 29/37

Applicative do-notation (2)

For example, an applicative parser:

```
\begin{array}{l} command If :: Parser \ Command \\ command If = \\ kwd \ "if" \\ c \leftarrow expr \\ kwd \ "then" \\ t \leftarrow command \\ kwd \ "else" \\ e \leftarrow command \\ return \ (If \ c \ t \ e) \end{array}
```

Applicative do-notation (1)

A variation of the do-notation is also available for applicatives:

 $\begin{array}{c} \mathbf{do} \\ a \leftarrow exp_1 \\ b \leftarrow exp_2 \\ return \ (\dots a \dots b \dots) \end{array}$

Note that the bound variables may only be used in the *return*-expression, or the code becomes monadic.

In this case, a must not occur in exp_2 .

COMP4075: Lecture 9 - p.30/37

Monadic Utility Functions

Some monad utilities:

```
sequence :: Monad \ m \Rightarrow [m \ a] \rightarrow m \ [a]
sequence\_:: Monad \ m \Rightarrow [m \ a] \rightarrow m \ ()
mapM :: Monad \ m \Rightarrow (a \rightarrow m \ b) \rightarrow [a] \rightarrow m \ [b]
mapM\_:: Monad \ m \Rightarrow (a \rightarrow m \ b) \rightarrow [a] \rightarrow m \ ()
when :: Monad \ m \Rightarrow Bool \rightarrow m \ () \rightarrow m \ ()
foldM :: Monad \ m \Rightarrow (a \rightarrow b \rightarrow m \ a) \rightarrow a \rightarrow [b] \rightarrow m \ a
liftM :: Monad \ m \Rightarrow (a \rightarrow b) \rightarrow m \ a \rightarrow m \ b
liftM2 :: Monad \ m \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow m \ a \rightarrow m \ b \rightarrow m \ c
```

COMP4075: Leature 0 p. 20/27

The Haskell IO Monad (1)

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually:

```
newtype IO a = IO (World \rightarrow (a, World))
```

Some operations:

```
putChar :: Char \rightarrow IO ()
putStr :: String \rightarrow IO ()
putStrLn :: String \rightarrow IO ()
getChar :: IO Char
getLine :: IO String
getContents :: IO String
```

COMP4075: Lecture 9 - p.33/37

The ST Monad: "Real" State

The ST monad (common Haskell extension) provides real, imperative state behind the scenes to allow efficient implementation of imperative algorithms:

```
data ST s a -- abstract
instance Monad (ST s)
newSTRef :: s ST a (STRef s a)
readSTRef :: STRef s a 	o ST s a
writeSTRef :: STRef s a 	o a 	o ST s ()
runST :: (forall\ s . st s a) ot
```

The Haskell IO Monad (2)

IO essentially provides all effects of typical imperative languages. Besides input/output:

- Pointers and imperative state (through IORef)
- Raising and handling exceptions
- Concurrency
- Foreign function interface

IO is sometimes referred to as the "sin bin"!

COMP4075: Lecture 9 – p.34/3

ST vs IO

Why use ST if IO also gives access to imperative state?

- ST much more focused: provides only state, not a lot more besides.
- ST computations can be run safely inside pure code.

It *is* possible to run *IO* comp. inside pure code:

 $unsafePerformIO :: IO \ a \rightarrow a$

But make sure you know what you are doing!

Reading

- Philip Wadler. The Essence of Functional Programming. Proceedings of the 19th ACM Symposium on Principles of Programming Languages (POPL'92), 1992.
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on* Applied Semantics 2000, Caminha, Portugal, 2000.

COMP4075: Lecture 9 – p.3