COMP4075: Lecture 9 *Monads in Haskell*

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 9 – p.1/37

This Lecture

- Monads in Haskell
- The Haskell Monad Class Hierarchy
- Some Standard Monads and Library Functions

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by a *Type Class*. In principle (but not quite from GHC 7.8 onwards):

class Monad m where $return :: a \to m \ a$ $(\gg) :: m \ a \to (a \to m \ b) \to m \ b$

Allows names of the common functions to be overloaded and sharing of derived definitions.

Monads in Haskell (2)

The Haskell monad class has two further methods with default definitions:

$$(\gg) :: m \ a \to m \ b \to m \ b$$
$$m \gg k = m \gg \lambda_{-} \to k$$
$$fail :: String \to m \ a$$
$$fail \ s = error \ s$$

(However, *fail* will likely be moved into a separate class *MonadFail* in the future.)

The Maybe Monad in Haskell

instance Monad Maybe where return = Just $Nothing \gg _ = Nothing$ $(Just \ x) \gg f = f \ x$

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other notions:

Functors

Applicative Functors (or just Applicatives)

Every monad is an applicative functor, and every applicative functor (and thus monad) is a functor.

Class hierarchy:

class Functor f where ... class Functor $f \Rightarrow Applicative f$ where ... class Applicative $m \Rightarrow Monad m$ where ...

The Monad Type Class Hierachy (2)

For example, *fmap* can be defined in terms of \gg and *return*, demonstrating that a monad is a functor:

fmap $f m = m \gg \lambda x \rightarrow return (f x)$

The Monad Type Class Hierachy (2)

For example, *fmap* can be defined in terms of \gg and *return*, demonstrating that a monad is a functor:

fmap $f m = m \gg \lambda x \rightarrow return (f x)$

A consequence of this class hierarchy is that to make some T an instance of Monad, an instance of T for both Functor and Applicative must also be provided.

The Monad Type Class Hierachy (2)

For example, *fmap* can be defined in terms of \gg and *return*, demonstrating that a monad is a functor:

fmap $f m = m \gg \lambda x \rightarrow return (f x)$

A consequence of this class hierarchy is that to make some T an instance of Monad, an instance of T for both Functor and Applicative must also be provided.

Note: Not a mathematical necessity, but a result of how these notions are defined in Haskell at present. E.g. monads can be understood in isolation.

An applicative functor is a functor with application, providing operations to:

- embed pure expressions (pure), and
- sequence computations and combine their results (<*>)

class Functor $f \Rightarrow Applicative f$ where $pure :: a \rightarrow f a$ $(<\!\!*\!\!>) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b$ $(*\!\!>) :: f a \rightarrow f b \rightarrow f b$ $(<\!\!*) :: f a \rightarrow f b \rightarrow f a$

COMP4075: Lecture 9 – p.8/37

 Like monads, applicative functors is a notion of computation.

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result:

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result:

The structure of a computation is static.

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result:
 - The structure of a computation is static.
 - Scope for running computations in parallel.

- Like monads, applicative functors is a notion of computation.
- The key difference is that the result of one computation is not made available to subsequent computations. As a result:
 - The structure of a computation is static.
 - Scope for running computations in parallel.
 - Whether the computations *actually* can be carried in parallel depends on what the specific effects of the applicative in question are.

Laws:

 $pure \ id \iff v = v$ $pure \ (\circ) \iff u \iff v \iff w = u \iff (v \iff w)$ $pure \ f \iff pure \ x = pure \ (f \ x)$ $u \iff pure \ y = pure \ (\$y) \iff u$

Laws:

 $pure \ id \iff v = v$ $pure \ (\circ) \iff u \iff v \iff w = u \iff (v \iff w)$ $pure \ f \iff pure \ x = pure \ (f \ x)$ $u \iff pure \ y = pure \ (\$y) \iff u$

Default definitions:

 $u \Rightarrow v = pure (const id) \Rightarrow u \Rightarrow v$ $u \Rightarrow v = pure const \Rightarrow u \Rightarrow v$

Instances of *Applicative*

instance Applicative [] where $pure \ x = [x]$ $fs \iff xs = [f \ x \mid f \leftarrow fs, x \leftarrow xs]$

Instances of *Applicative*

instance Applicative [] where $pure \ x = [x]$ $fs \iff xs = [f \ x \mid f \leftarrow fs, x \leftarrow xs]$

instance Applicative Maybe where pure = Just $Just f \iff m = fmap f m$ $Nothing \iff - = Nothing$

COMP4075: Lecture 9 - p.11/37

Class Alternative

The class *Alternative* is a monoid on applicative functors:

class Applicative $f \Rightarrow$ Alternative f where $empty :: f \ a$ $(<|>) :: f \ a \rightarrow f \ a \rightarrow f \ a$ $some \ :: f \ a \rightarrow f \ [a]$ $many \ :: f \ a \rightarrow f \ [a]$ $some \ v = pure \ (:) \iff v \iff many \ v$ $many \ v = some \ v \ <|> pure \ []$

Class Alternative

The class *Alternative* is a monoid on applicative functors:

class Applicative $f \Rightarrow$ Alternative f where $empty :: f \ a$ $(<|>) :: f \ a \rightarrow f \ a \rightarrow f \ a$ $some \ :: f \ a \rightarrow f \ [a]$ $many \ :: f \ a \rightarrow f \ [a]$ $some \ v = pure \ (:) \iff v \iff many \ v$ $many \ v = some \ v \ <|> pure \ []$

<|> can be understood as "one or the other", some
as "at least one", and many as "zero or more".

Instances of *Alternative*

instance Alternative [] where empty = [] $(\langle \rangle) = (++)$

Instances of *Alternative*

instance Alternative [] where empty = [] $(\langle \rangle) = (++)$

instance Alternative Maybe where empty = Nothing Nothing <|> r = r $l <|> _ = l$

Example: Applicative Parser (1)

Applicative functors are frequently used in the context of parsing combinators. In fact, that is where their origin lies.

Example: Applicative Parser (1)

Applicative functors are frequently used in the context of parsing combinators. In fact, that is where their origin lies.

A *Parser* computation allows reading of input, fails if input cannot be parsed, and supports trying alternatives:

instance Applicative Parser where...
instance Alternative Parser where...

Example: Applicative Parser (2)

Syntax for a language fragment:

Abstract syntax:

 $data \ Command = If \ Expr \ Command \ Command \ | \ Block \ [\ Command]$

Recognising terminals:

 $kwd, symb :: String \rightarrow Parser ()$

COMP4075: Lecture 9 – p.15/37

Example: Applicative Parser (3)

command :: Parser Command command =pure If <* kwd "then" <*> command <* kwd "else" <*> command <> pure Block<* kwd "begin"</pre> $\ll many (command \ll symb "; ")$ <* kwd "end"</pre>

Applicative Functors and Monads

A requirement is return = pure. In fact, the *Monad* class provides a default definition of *return* defined that way:

class Applicative $m \Rightarrow Monad \ m$ where return :: $a \rightarrow m \ a$ return = pure $(\gg) :: m \ a \rightarrow (a \rightarrow m \ b) \rightarrow m \ b$

Exercise: A State Monad in Haskell

Recall that a type $Int \rightarrow (a, Int)$ can be viewed as a state monad.

Haskell 2010 does not permit type synonyms to be instances of classes. Hence we have to define a new type:

newtype $S \ a = S \{ unS :: (Int \rightarrow (a, Int)) \}$

Thus: $unS :: S \ a \to (Int \to (a, Int))$

Provide a *Functor*, *Applicative*, and *Monad* instance for *S*.

Solution: Functor Instance

instance Functor S where $fmap \ f \ sa = S \ \lambda s \rightarrow$ let $(a, s') = unS \ sa \ s$ $(f \ a, s')$

COMP4075: Lecture 9 - p.19/37

Solution: Applicative Instance

instance Applicative S where $pure \ a = S \$ \lambda s \rightarrow (a, s)$ $sf \iff sa = S \$ \lambda s \rightarrow$ let $(f, s') = unS \ sf \ s$ $unS \ (fmap \ f \ sa) \ s'$

Solution: Monad Instance

instance Monad S where $m \gg f = S \$ \lambda s \rightarrow$ let (a, s') = unS m sin unS (f a) s'

(Using the default definition return = pure.)

The List Monad

Computation with many possible results, "nondeterminism": instance Monad [] where $return \ a = [a]$ $m \gg f = concat \ (map \ f \ m)$ $fail \ s = []$

Example:

Result:

 $\begin{aligned} x \leftarrow [1, 2] \\ y \leftarrow [\texttt{'a'}, \texttt{'b'}] \\ return \ (x, y) \end{aligned}$

[(1,'a'),(1,'b'), (2,'a'),(2,'b')]

COMP4075: Lecture 9 – p.22/37

The Reader Monad

Computation in an environment:

instance Monad $((\rightarrow) e)$ where return a = const a $m \gg f = \lambda e \rightarrow f (m e) e$ $getEnv :: ((\rightarrow) e) e$ qetEnv = id

Monad-specific Operations (1)

To be useful, monads need to be equipped with additional operations specific to the effects in question. For example:

 $fail :: String \rightarrow Maybe \ a$ $fail \ s = Nothing$ $catch :: Maybe \ a \rightarrow Maybe \ a \rightarrow Maybe \ a$ $m1 \ `catch' \ m2 =$ $case \ m1 \ of$ $Just _ \rightarrow m1$ $Nothing \rightarrow m2$

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int
$$\rightarrow S()$$

set $a = S(\lambda_{-} \rightarrow ((), a))$
get :: S Int
get = $S(\lambda s \rightarrow (s, s))$

Moreover, need to "run" a computation. E.g.:

$$runS :: S \ a \to a$$
$$runS \ m = fst \ (unS \ m \ 0)$$

The do-notation (1)

Haskell provides convenient syntax for programming with monads:

do

 $a \leftarrow exp_1$ $b \leftarrow exp_2$ return exp_3 is syntactic sugar for $exp_1 \gg \lambda a \rightarrow$ $exp_2 \gg \lambda b \rightarrow$ $return exp_3$ Note: a in scope in exp_2 , a and b in exp_3 .

The do-notation (2)

Computations can be done solely for effect, ignoring the computed value: do exp_1 exp_2 return exp_3 is syntactic sugar for $exp_1 \gg \lambda_- \to$ $exp_2 \gg \lambda_- \rightarrow$ $return exp_3$

The do-notation (3)

A let-construct is also provided: do let $a = exp_1$ $\underline{b} = exp_2$ return exp_3 is equivalent to do $a \leftarrow return \ exp_1$ $b \leftarrow return \ exp_2$ return exp_3

Numbering Trees in do-notation

 $numberTree \ t = runS \ (ntAux \ t)$ where $ntAux :: Tree \ a \to S \ (Tree \ Int)$ $ntAux (Leaf _) = \mathbf{do}$ $n \leftarrow get$ set (n+1)return (Leaf n) $ntAux (Node \ t1 \ t2) = \mathbf{do}$ $t1' \leftarrow ntAux \ t1$ $t2' \leftarrow ntAux \ t2$ return (Node t1' t2')

Applicative do-notation (1)

A variation of the do-notation is also available for applicatives:

do

 $a \leftarrow exp_1$ $b \leftarrow exp_2$ $return (\dots a \dots b \dots)$

Note that the bound variables may only be used in the *return*-expression, or the code becomes monadic.

In this case, a must not occur in exp_2 .

Applicative do-notation (2)

For example, an applicative parser:

commandIf :: *Parser* Command commandIf =kwd "if" $c \leftarrow expr$ kwd "then" $t \leftarrow command$ kwd "else" $e \leftarrow command$ return (If c t e)

Monadic Utility Functions

Some monad utilities:

sequence :: Monad $m \Rightarrow [m \ a] \rightarrow m |a|$ sequence_:: Monad $m \Rightarrow [m \ a] \rightarrow m$ () mapM :: $Monad \ m \Rightarrow (a \rightarrow m \ b) \rightarrow [a] \rightarrow m \ [b]$ $mapM_{-}::Monad \ m \Rightarrow (a \rightarrow m \ b) \rightarrow [a] \rightarrow m \ ()$ when $:: Monad \ m \Rightarrow Bool \rightarrow m \ () \rightarrow m \ ()$ fold $M :: Monad m \Rightarrow$ $(a \rightarrow b \rightarrow m \ a) \rightarrow a \rightarrow [b] \rightarrow m \ a$ $:: Monad \ m \Rightarrow (a \rightarrow b) \rightarrow m \ a \rightarrow m \ b$ *liftM* liftM2 :: Monad $m \Rightarrow$ $(a \rightarrow b \rightarrow c) \rightarrow m \ a \rightarrow m \ b \rightarrow m \ c$

The Haskell IO Monad (1)

In Haskell, IO is handled through the IO monad. IO is *abstract*! Conceptually: newtype $IO \ a = IO \ (World \rightarrow (a, World))$ Some operations:

IP4075: Lecture 9 – p.33/37

 $\begin{array}{ll} putChar & :: Char \rightarrow IO \ () \\ putStr & :: String \rightarrow IO \ () \\ putStrLn & :: String \rightarrow IO \ () \\ getChar & :: IO \ Char \\ getLine & :: IO \ String \\ getContents :: IO \ String \end{array}$

The Haskell IO Monad (2)

IO essentially provides all effects of typical imperative languages. Besides input/output:

- Pointers and imperative state (through *IORef*)
- Raising and handling exceptions
- Concurrency
- Foreign function interface

The Haskell IO Monad (2)

IO essentially provides all effects of typical imperative languages. Besides input/output:

- Pointers and imperative state (through *IORef*)
- Raising and handling exceptions
- Concurrency
- Foreign function interface

IO is sometimes referred to as the "sin bin"!

The ST Monad: "Real" State

The ST monad (common Haskell extension) provides real, imperative state behind the scenes to allow efficient implementation of imperative algorithms:

data $ST \ s \ a$ -- abstract instance $Monad \ (ST \ s)$ $newSTRef \ :: \ s \ ST \ a \ (STRef \ s \ a)$ $readSTRef \ :: \ STRef \ s \ a \ \rightarrow \ ST \ s \ a$ $writeSTRef \ :: \ STRef \ s \ a \ \rightarrow \ a \ \rightarrow \ ST \ s \ ()$ $runST \ :: \ (forall \ s \ . \ st \ s \ a) \ \rightarrow \ a$

Why use *ST* if *IO* also gives access to imperative state?

Why use ST if IO also gives access to imperative state?

 ST much more focused: provides only state, not a lot more besides.

Why use *ST* if *IO* also gives access to imperative state?

- ST much more focused: provides only state, not a lot more besides.
- ST computations can be run safely inside pure code.

Why use *ST* if *IO* also gives access to imperative state?

- ST much more focused: provides only state, not a lot more besides.
- ST computations can be run safely inside pure code.

It *is* possible to run *IO* comp. inside pure code:

 $unsafePerformIO :: IO \ a \rightarrow a$

But make sure you know what you are doing!

Reading

- Philip Wadler. The Essence of Functional Programming. *Proceedings of the 19th ACM Symposium on Principles of Programming Languages* (POPL'92), 1992.
- Nick Benton, John Hughes, Eugenio Moggi. Monads and Effects. In *International Summer School on Applied Semantics 2000*, Caminha, Portugal, 2000.