
COMP4075: Lecture 9
Monads in Haskell

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 9 – p.1/37

This Lecture

• Monads in Haskell

• The Haskell Monad Class Hierarchy

• Some Standard Monads and Library
Functions

COMP4075: Lecture 9 – p.2/37

Monads in Haskell (1)

In Haskell, the notion of a monad is captured by
a Type Class. In principle (but not quite from
GHC 7.8 onwards):

class Monad m where

return :: a → m a

(>>=) ::m a → (a → m b)→ m b

Allows names of the common functions to be
overloaded and sharing of derived definitions.

COMP4075: Lecture 9 – p.3/37

Monads in Haskell (2)

The Haskell monad class has two further
methods with default definitions:

(>>) ::m a → m b → m b

m >> k = m >>= λ → k

fail :: String → m a

fail s = error s

(However, fail will likely be moved into a separate
class MonadFail in the future.)

COMP4075: Lecture 9 – p.4/37

The Maybe Monad in Haskell

instance Monad Maybe where

return = Just

Nothing >>= = Nothing

(Just x)>>= f = f x

COMP4075: Lecture 9 – p.5/37

The Monad Type Class Hierachy (1)

Monads are mathematically related to two other
notions:

• Functors

• Applicative Functors (or just Applicatives)

Every monad is an applicative functor, and every
applicative functor (and thus monad) is a functor.

Class hierarchy:

class Functor f where . . .

class Functor f ⇒ Applicative f where . . .

class Applicative m ⇒ Monad m where . . .
COMP4075: Lecture 9 – p.6/37

The Monad Type Class Hierachy (2)

For example, fmap can be defined in terms of >>=
and return, demonstrating that a monad is a functor:

fmap f m = m >>= λx → return (f x)

COMP4075: Lecture 9 – p.7/37

The Monad Type Class Hierachy (2)

For example, fmap can be defined in terms of >>=
and return, demonstrating that a monad is a functor:

fmap f m = m >>= λx → return (f x)

A consequence of this class hierarchy is that to
make some T an instance of Monad , an instance
of T for both Functor and Applicative must also
be provided.

COMP4075: Lecture 9 – p.7/37

The Monad Type Class Hierachy (2)

For example, fmap can be defined in terms of >>=
and return, demonstrating that a monad is a functor:

fmap f m = m >>= λx → return (f x)

A consequence of this class hierarchy is that to
make some T an instance of Monad , an instance
of T for both Functor and Applicative must also
be provided.

Note: Not a mathematical necessity, but a result
of how these notions are defined in Haskell at
present. E.g. monads can be understood in isolation.

COMP4075: Lecture 9 – p.7/37

Applicative Functors (1)

An applicative functor is a functor with
application, providing operations to:

• embed pure expressions (pure), and

• sequence computations and combine their
results (<∗>)

class Functor f ⇒ Applicative f where

pure :: a → f a

(<∗>) :: f (a → b)→ f a → f b

(∗>) :: f a → f b → f b

(<∗) :: f a → f b → f a

COMP4075: Lecture 9 – p.8/37

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

COMP4075: Lecture 9 – p.9/37

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result:

COMP4075: Lecture 9 – p.9/37

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result:

- The structure of a computation is static.

COMP4075: Lecture 9 – p.9/37

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result:

- The structure of a computation is static.

- Scope for running computations in
parallel.

COMP4075: Lecture 9 – p.9/37

Applicative Functors (2)

• Like monads, applicative functors is a notion
of computation.

• The key difference is that the result of one
computation is not made available to
subsequent computations. As a result:

- The structure of a computation is static.

- Scope for running computations in
parallel.

- Whether the computations actually can be
carried in parallel depends on what the specific
effects of the applicative in question are.

COMP4075: Lecture 9 – p.9/37

Applicative Functors (3)

Laws:

pure id <∗> v = v

pure (◦) <∗> u <∗> v <∗> w = u <∗> (v <∗> w)

pure f <∗> pure x = pure (f x)

u <∗> pure y = pure ($y) <∗> u

COMP4075: Lecture 9 – p.10/37

Applicative Functors (3)

Laws:

pure id <∗> v = v

pure (◦) <∗> u <∗> v <∗> w = u <∗> (v <∗> w)

pure f <∗> pure x = pure (f x)

u <∗> pure y = pure ($y) <∗> u

Default definitions:

u ∗> v = pure (const id) <∗> u <∗> v

u <∗ v = pure const <∗> u <∗> v

COMP4075: Lecture 9 – p.10/37

Instances of Applicative

instance Applicative [] where

pure x = [x]

fs <∗> xs = [f x | f ← fs , x ← xs]

COMP4075: Lecture 9 – p.11/37

Instances of Applicative

instance Applicative [] where

pure x = [x]

fs <∗> xs = [f x | f ← fs , x ← xs]

instance Applicative Maybe where

pure = Just

Just f <∗> m = fmap f m

Nothing <∗> = Nothing

COMP4075: Lecture 9 – p.11/37

Class Alternative

The class Alternative is a monoid on applicative
functors:

class Applicative f ⇒ Alternative f where

empty :: f a

(<|>) :: f a → f a → f a

some :: f a → f [a]

many :: f a → f [a]

some v = pure (:) <∗> v <∗> many v

many v = some v <|> pure []

COMP4075: Lecture 9 – p.12/37

Class Alternative

The class Alternative is a monoid on applicative
functors:

class Applicative f ⇒ Alternative f where

empty :: f a

(<|>) :: f a → f a → f a

some :: f a → f [a]

many :: f a → f [a]

some v = pure (:) <∗> v <∗> many v

many v = some v <|> pure []

<|> can be understood as “one or the other”, some

as “at least one”, and many as “zero or more”.
COMP4075: Lecture 9 – p.12/37

Instances of Alternative

instance Alternative [] where

empty = []

(<|>) = (++)

COMP4075: Lecture 9 – p.13/37

Instances of Alternative

instance Alternative [] where

empty = []

(<|>) = (++)

instance Alternative Maybe where

empty = Nothing

Nothing <|> r = r

l <|> = l

COMP4075: Lecture 9 – p.13/37

Example: Applicative Parser (1)

Applicative functors are frequently used in the
context of parsing combinators. In fact, that is
where their origin lies.

COMP4075: Lecture 9 – p.14/37

Example: Applicative Parser (1)

Applicative functors are frequently used in the
context of parsing combinators. In fact, that is
where their origin lies.

A Parser computation allows reading of input,
fails if input cannot be parsed, and supports
trying alternatives:

instance Applicative Parser where . . .

instance Alternative Parser where . . .

COMP4075: Lecture 9 – p.14/37

Example: Applicative Parser (2)

Syntax for a language fragment:

command → if expr then command else command

| begin { command ; } end

Abstract syntax:

data Command = If Expr Command Command

| Block [Command]

Recognising terminals:

kwd , symb :: String → Parser ()
COMP4075: Lecture 9 – p.15/37

Example: Applicative Parser (3)

command :: Parser Command

command =

pure If

<∗ kwd "if" <∗> expr

<∗ kwd "then" <∗> command

<∗ kwd "else" <∗> command

<|> pure Block

<∗ kwd "begin"

<∗> many (command <∗ symb ";")

<∗ kwd "end"

COMP4075: Lecture 9 – p.16/37

Applicative Functors and Monads

A requirement is return = pure.

In fact, the Monad class provides a default
definition of return defined that way:

class Applicative m ⇒ Monad m where

return :: a → m a

return = pure

(>>=) ::m a → (a → m b)→ m b

COMP4075: Lecture 9 – p.17/37

Exercise: A State Monad in Haskell

Recall that a type Int → (a, Int) can be viewed
as a state monad.

Haskell 2010 does not permit type synonyms to
be instances of classes. Hence we have to
define a new type:

newtype S a = S {unS :: (Int → (a, Int))}

Thus: unS :: S a → (Int → (a, Int))

Provide a Functor , Applicative, and Monad
instance for S .

COMP4075: Lecture 9 – p.18/37

Solution: Functor Instance

instance Functor S where

fmap f sa = S $ λs →

let

(a, s ′) = unS sa s

in

(f a, s ′)

COMP4075: Lecture 9 – p.19/37

Solution: Applicative Instance

instance Applicative S where

pure a = S $ λs → (a, s)

sf <∗> sa = S $ λs →

let

(f , s ′) = unS sf s

in

unS (fmap f sa) s ′

COMP4075: Lecture 9 – p.20/37

Solution: Monad Instance

instance Monad S where

m >>= f = S $ λs →

let (a, s ′) = unS m s

in unS (f a) s ′

(Using the default definition return = pure.)

COMP4075: Lecture 9 – p.21/37

The List Monad

Computation with many possible results,
“nondeterminism”:

instance Monad [] where

return a = [a]

m >>= f = concat (map f m)

fail s = []

Example:

x ← [1, 2]

y ← [’a’,’b’]

return (x , y)

Result:

[(1,’a’), (1,’b’),

(2,’a’), (2,’b’)]

COMP4075: Lecture 9 – p.22/37

The Reader Monad

Computation in an environment:

instance Monad ((→) e) where

return a = const a

m >>= f = λe → f (m e) e

getEnv :: ((→) e) e

getEnv = id

COMP4075: Lecture 9 – p.23/37

Monad-specific Operations (1)

To be useful, monads need to be equipped with
additional operations specific to the effects in
question. For example:

fail :: String → Maybe a

fail s = Nothing

catch ::Maybe a → Maybe a → Maybe a

m1 ‘catch‘m2 =

case m1 of

Just → m1

Nothing → m2

COMP4075: Lecture 9 – p.24/37

Monad-specific Operations (2)

Typical operations on a state monad:

set :: Int → S ()

set a = S (λ → ((), a))

get :: S Int

get = S (λs → (s, s))

Moreover, need to “run” a computation. E.g.:

runS :: S a → a

runS m = fst (unS m 0)

COMP4075: Lecture 9 – p.25/37

The do-notation (1)

Haskell provides convenient syntax for
programming with monads:

do

a ← exp1
b ← exp2
return exp3

is syntactic sugar for

exp1 >>= λa →

exp2 >>= λb →

return exp3

Note: a in scope in exp2, a and b in exp3.
COMP4075: Lecture 9 – p.26/37

The do-notation (2)

Computations can be done solely for effect,
ignoring the computed value:

do

exp1
exp2
return exp3

is syntactic sugar for

exp1 >>= λ →

exp2 >>= λ →

return exp3

COMP4075: Lecture 9 – p.27/37

The do-notation (3)

A let-construct is also provided:

do

let a = exp1
b = exp2

return exp3

is equivalent to

do

a ← return exp1

b ← return exp2

return exp3

COMP4075: Lecture 9 – p.28/37

Numbering Trees in do-notation

numberTree t = runS (ntAux t)

where

ntAux :: Tree a → S (Tree Int)

ntAux (Leaf) = do

n ← get

set (n + 1)

return (Leaf n)

ntAux (Node t1 t2) = do

t1 ′ ← ntAux t1

t2 ′ ← ntAux t2

return (Node t1 ′ t2 ′)
COMP4075: Lecture 9 – p.29/37

Applicative do-notation (1)

A variation of the do-notation is also available for
applicatives:

do

a ← exp1
b ← exp2
return (. . . a . . . b . . .)

Note that the bound variables may only be used
in the return-expression, or the code becomes
monadic.

In this case, a must not occur in exp2.

COMP4075: Lecture 9 – p.30/37

Applicative do-notation (2)

For example, an applicative parser:

commandIf :: Parser Command

commandIf =

kwd "if"

c ← expr

kwd "then"

t ← command

kwd "else"

e ← command

return (If c t e)

COMP4075: Lecture 9 – p.31/37

Monadic Utility Functions

Some monad utilities:

sequence ::Monad m ⇒ [m a]→ m [a]

sequence_ ::Monad m ⇒ [m a]→ m ()

mapM ::Monad m ⇒ (a → m b)→ [a]→ m [b]

mapM_ ::Monad m ⇒ (a → m b)→ [a]→ m ()

when ::Monad m ⇒ Bool → m ()→ m ()

foldM ::Monad m ⇒

(a → b → m a)→ a → [b]→ m a

liftM ::Monad m ⇒ (a → b)→ m a → m b

liftM2 ::Monad m ⇒

(a → b → c)→ m a → m b → m c
COMP4075: Lecture 9 – p.32/37

The Haskell IO Monad (1)

In Haskell, IO is handled through the IO monad.
IO is abstract ! Conceptually:

newtype IO a = IO (World → (a,World))

Some operations:

putChar :: Char → IO ()

putStr :: String → IO ()

putStrLn :: String → IO ()

getChar :: IO Char

getLine :: IO String

getContents :: IO String

COMP4075: Lecture 9 – p.33/37

The Haskell IO Monad (2)

IO essentially provides all effects of typical
imperative languages. Besides input/output:

• Pointers and imperative state (through IORef)

• Raising and handling exceptions

• Concurrency

• Foreign function interface

COMP4075: Lecture 9 – p.34/37

The Haskell IO Monad (2)

IO essentially provides all effects of typical
imperative languages. Besides input/output:

• Pointers and imperative state (through IORef)

• Raising and handling exceptions

• Concurrency

• Foreign function interface

IO is sometimes referred to as the “sin bin”!

COMP4075: Lecture 9 – p.34/37

The ST Monad: “Real” State

The ST monad (common Haskell extension)
provides real, imperative state behind the scenes
to allow efficient implementation of imperative
algorithms:

data ST s a -- abstract

instance Monad (ST s)

newSTRef :: s ST a (STRef s a)

readSTRef :: STRef s a → ST s a

writeSTRef :: STRef s a → a → ST s ()

runST :: (forall s . st s a)→ a

COMP4075: Lecture 9 – p.35/37

ST vs IO

Why use ST if IO also gives access to
imperative state?

COMP4075: Lecture 9 – p.36/37

ST vs IO

Why use ST if IO also gives access to
imperative state?

• ST much more focused: provides only state,
not a lot more besides.

COMP4075: Lecture 9 – p.36/37

ST vs IO

Why use ST if IO also gives access to
imperative state?

• ST much more focused: provides only state,
not a lot more besides.

• ST computations can be run safely inside
pure code.

COMP4075: Lecture 9 – p.36/37

ST vs IO

Why use ST if IO also gives access to
imperative state?

• ST much more focused: provides only state,
not a lot more besides.

• ST computations can be run safely inside
pure code.

It is possible to run IO comp. inside pure code:

unsafePerformIO :: IO a → a

But make sure you know what you are doing!
COMP4075: Lecture 9 – p.36/37

Reading

• Philip Wadler. The Essence of Functional

Programming. Proceedings of the 19th ACM

Symposium on Principles of Programming Languages

(POPL’92), 1992.

• Nick Benton, John Hughes, Eugenio Moggi. Monads

and Effects. In International Summer School on

Applied Semantics 2000, Caminha, Portugal, 2000.

COMP4075: Lecture 9 – p.37/37

	This Lecture
	Monads in Haskell (1)
	Monads in Haskell (2)
	The ensuremath {Conid {Maybe}} Monad in Haskell
	The Monad Type Class Hierachy (1)
	The Monad Type Class Hierachy (2)
	Applicative Functors (1)
	Applicative Functors (2)
	Applicative Functors (3)
	Instances of ensuremath {Conid {Applicative}}
	Class ensuremath {Conid {Alternative}}
	Instances of ensuremath {Conid {Alternative}}
	Example: Applicative Parser (1)
	Example: Applicative Parser (2)
	Example: Applicative Parser (3)
	Applicative Functors and Monads
	Exercise: A State Monad in Haskell
	Solution: ensuremath {Conid {Functor}} Instance
	Solution: ensuremath {Conid {Applicative}} Instance
	Solution: ensuremath {Conid {Monad}} Instance
	The List Monad
	The Reader Monad
	Monad-specific Operations (1)
	Monad-specific Operations (2)
	The ensuremath {mathbf {do}}-notation (1)
	The ensuremath {mathbf {do}}-notation (2)
	The ensuremath {mathbf {do}}-notation (3)
	Numbering Trees in ensuremath {mathbf {do}}-notation
	Applicative ensuremath {mathbf {do}}-notation (1)
	Applicative ensuremath {mathbf {do}}-notation (2)
	Monadic Utility Functions
	The Haskell IO Monad (1)
	The Haskell IO Monad (2)
	The ST Monad: ``Real'' State
	ensuremath {Conid {ST}} vs ensuremath {Conid {IO}}
	Reading

