COMP4075: Lecture 14

Property-based Testing

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 14 - p.1/2

QuickCheck: What is it? (2)

- Support for checking test coverage
- Counterexample produced when test case fails
- Counterexamples automatically shrunk in attempt to find minimal counterexample

QuickCheck: What is it? (1)

- · Framework for property-based testing
- Flexible language for stating properties
- Random test cases generated automatically based on type of argument(s) to properties.
- Highly configurable:
 - Number, size of test cases can easily be specified
 - Additional types for more fine-grained control of test case generation
 - Customised test case generators

COMP4075: Lecture 14 - p.2/28

Basic Example

```
import Test.QuickCheck

prop\_RevRev :: [Int] \rightarrow Bool

prop\_RevRev \ xs =

reverse \ (reverse \ xs) \equiv xs

prop\_RevApp :: [Int] \rightarrow [Int] \rightarrow Bool

prop\_RevApp \ xs \ ys =

reverse \ (xs + ys) \equiv reverse \ ys + reverse \ xs

quickCheck \ (prop\_RevApp)
```

Result: +++ OK, passed 100 tests

COMP4075: Lecture 14 - p.3/28

COMP4075: Leature 14 p. 4/29

Class Testable

Type of quickCheck:

```
quickCheck :: Testable \ prop \Rightarrow prop \rightarrow IO \ ()
```

Testable and some instances:

class Testable prop where

property :: $prop \rightarrow Property$ exhaustive :: $prop \rightarrow Bool$

instance Testable Bool

instance Testable Property

instance $(Arbitrary\ a, Show\ a, Testable\ prop) \Rightarrow$

Testable $(a \rightarrow prop)$

COMP4075: Lecture 14 - p.5/2

Generators (1)

Generators can further be constructed directly for any type in the class Random:

 $chooseAny :: Random \ a \Rightarrow Gen \ a$ $choose :: Random \ a \Rightarrow (a, a) \rightarrow Gen \ a$

The latter can be used to state properties that only hold over a specific range.

Class Arbitrary

class Arbitrary a where

 $arbitrary :: Gen \ a$ $shrink :: a \rightarrow [a]$ $generate :: Gen \ a \rightarrow IO \ a$

Arbitrary instance for all basic types provided. Easy to define additional ones.

Gen is a Monad, Applicative, Functor (and more).

Example:

```
generate (arbitrary :: Gen [Int])
Result: [28, -2, -26, 6, 8, 8, 1]
```

COMP4075: Lecture 14 - p.6/28

Generators (2)

Int and any enumeration type are in the class Random. The following are efficient specializations of choose:

 $chooseEnum :: Enum \ a \Rightarrow (a, a) \rightarrow Gen \ a$ $chooseInt :: (Int, Int) \rightarrow Gen \ Int$

Generators can also be constrained by a predicate:

 $suchThat :: Gen \ a \rightarrow (a \rightarrow Bool) \rightarrow Gen \ a$

Stating Properties (1)

Implication is used to state that a property should hold whenever a precondition is satisfied:

$$(==>):: Testable\ prop \Rightarrow Bool \rightarrow prop \rightarrow Property\ \mathbf{infix}$$

For example, the following is a property relating a real (represented by Double) number to its square:

```
prop\_SquareLarger :: Double \rightarrow Bool

prop\_SquareLarger \ x = x \uparrow 2 > x
```

COMP4075: Lecture 14 - p.9/28

Stating Properties (3)

Alternatively, *universal quantification* allows using a generator that only generates valid data:

$$forAll :: (Show\ a,\ Testable\ prop) \Rightarrow$$
 $Gen\ a \to (a \to prop) \to Property$
For example:
 $quickCheck$

 $(forAll\ (chooseAny\ `suchThat`\ (>1))$ $prop_SquareLarger)$

Result: +++ OK, passed 100 tests.

Stating Properties (2)

It is not universally true, of course:

```
quickCheck prop_SquareLarger
```

```
Result: *** Failed! Falsifiable (after
1 test): 0.0
```

But a sufficient precondition is that the number is strictly greater than 1. Thus:

```
quickCheck
(\lambda x \to (x > 1) ==> prop\_SquareLarger x)
```

Result: +++ OK, passed 100 tests.

COMP4075: Lecture 14 - p.10/28

Stating Properties (4)

A generator that generates valid test data is typically more efficient than generating data and discarding what does not fit. For example:

```
prop\_Index :: Eq \ a \Rightarrow [a] \rightarrow Property
prop\_Index \ xs =
length \ xs > 0 ==>
forAll \ (choose \ (0, length \ xs - 1)) \$ \lambda i \rightarrow
xs !! \ i \equiv head \ (drop \ i \ xs)
```

Note the use of both implication and universal quantification in this partiulcar formulation.

Stating Properties (5)

Properties can be combined using *conjunction* and *disjunction*:

```
(.\&\&.) :: (Testable\ prop1, Testable\ prop2)
\Rightarrow prop1 \rightarrow prop2 \rightarrow Property
(.||.) :: (Testable\ prop1, Testable\ prop2)
\Rightarrow prop1 \rightarrow prop2 \rightarrow Property
```

COMP4075: Lecture 14 - p.13/2

Modifiers (2)

Alternative formulation of the index property with a *type* that captures that it holds only for non-empty lists (thus avoiding the precondition):

```
prop\_Index ::
Eq \ a \Rightarrow NonEmptyList \ a \rightarrow Property
prop\_Index \ (NonEmpty \ xs) =
forAll \ (choose \ (0, length \ xs - 1)) \$ \lambda i \rightarrow
xs :! \ i \equiv head \ (drop \ i \ xs)
```

Modifiers (1)

A number of newtypes with *Arbitrary* instances.

E.g. NonEmptyList a, SortedList a, NonNegative a

Typical definitions:

```
newtype NonEmptyList\ a = NonEmpty\ \{\ getNonEmpty :: [a]\}
newtype NonNegative\ a = NonNegative\ \{\ getNonNegative :: a\}
```

Allows to more precice formulations

COMP4075: Lecture 14 - p.14/28

Runnnig Tests

Basic function to run tests:

```
quickCheck :: Testable prop \Rightarrow prop \rightarrow IO ()
```

Printing of all test cases:

```
verboseCheck :: Testable prop \Rightarrow prop \rightarrow IO ()
```

Controlling e.g. number and size of test cases:

```
quickCheckWith ::
Testable\ prop \Rightarrow Args \rightarrow prop \rightarrow IO\ ()
quickCheckWith
(stdArgs\ \{maxSize = 10, maxSuccess = 1000\})
prop\_XXX
```

Labelling and Coverage (1)

label attaches a label to a test case:

```
label :: Testable \ prop \Rightarrow String \rightarrow prop \rightarrow Property
```

Example:

```
prop\_RevRev :: [Int] \rightarrow Property
prop\_RevRev \ xs =
label ("length is " + show (length \ xs)) $
reverse \ (reverse \ xs) === xs
```

COMP4075: Lecture 14 - p.17/28

A Cautionary Tale (1)

```
prop\_Sqrt :: Double \rightarrow Bool
prop\_Sqrt x
\mid x < 0 = isNaN \ sqrtX
\mid x \equiv 0 \lor x \equiv 1 = sqrtX \equiv x
\mid x < 1 = sqrtX > x
\mid x > 1 = sqrtX > 0 \land sqrtX < x
where
sqrtX = sqrt \ x
main = quickCheck \ propSqrt
```

Result: +++ OK, passed 100 tests

Labelling and Coverage (2)

Result:

```
+++ OK, passed 100 tests: 7% length is 7 6% length is 3 5% length is 4 4% length is 6
```

There are also *cover* and *checkCover* for checking/enforcingig specific coverage requirements.

COMP4075: Lecture 14 - p.18/28

A Cautionary Tale (2)

```
prop\_Sqrt :: Double 	o Bool prop\_Sqrt \ x ... \mathbf{where} sqrtX = flawedSqrt \ x flawedSqrt \ x \mid x \equiv 1 = 0 \mid otherwise = sqrt \ x main = quickCheck\ propSqrt Result: +++ OK, passed 100 tests \textit{Errr} \dots
```

A Cautionary Tale (3)

```
prop\_Sqrt::Double 	o Bool \ prop\_Sqrt x \ \dots \  where sqrtX = flawedSqrt x \ \dots \  main = quickCheckWith \ (stdArgs \{ maxSuccess = 1000000 \}) \ propSqrt \  Result: +++ OK, passed 1000000 tests Oops. (Very unlikely 1.0 will be picked)
```

A Cautionary Tale (5)

```
\begin{array}{l} prop\_SqrtX :: Double \rightarrow Bool \\ prop\_SqrtX \ x \\ \mid x < 0 = isNaN \ sqrtX \\ \mid x \leqslant 1 = sqrtX \geqslant x \\ \mid x > 1 = sqrtX > 0 \land sqrtX < x \\ \textbf{where} \\ sqrtX = mySqrt \ x \end{array}
```

A Cautionary Tale (4)

Simply test specific cases when needed:

```
prop\_Sqrt0 :: Bool

prop\_Sqrt0 = mySqrt \ 0 \equiv 0

prop\_Sqrt1 :: Bool

prop\_Sqrt1 = mySqrt \ 1 \equiv 1
```

COMP4075: Lecture 14 - p.22/28

COMP4075: Lecture 14 - p.24/28

A Cautionary Tale (6)

(counterexample adds a string to a property that gets printed if the property fails.)

Testing Interval Arithmetic (1)

Lifting a unary operator \ominus to an operator $\hat{\ominus}$ working on intervals is defined as follows, assuming \ominus is defined on the entire interval:

$$\hat{\ominus}i = [\min_{\forall x \in i} \ominus x, \ \max_{\forall x \in i} \ominus x]$$

And for binary operators:

$$i_1 \hat{\otimes} i_2 = \left[\min_{\forall x \in i_1, y \in i_2} x \otimes y, \max_{\forall x \in i_1, y \in i_2} x \otimes y \right]$$

COMP4075: Lecture 14 - p.25/28

Testing Interval Arithmetic (3)

Unfortunately, $\hat{\ominus}i = [-\infty, +\infty]$ satisfies

$$\forall x \in i. \ominus x \in \hat{\ominus}i$$

We should ideally test that the result interval is not larger than necessary. But that is hard too.

However, the definition does imply that a 1-point interval must be mapped to a 1-point interval:

$$\hat{\ominus}[x,x] = [\ominus x, \ \ominus x]$$

While not perfect, does rule out trivial implementations and it is easy to test.

Testing Interval Arithmetic (2)

But how can we test that? In general, very difficult to find the global minimum/maximum of a function over an interval without further information e.g. about its derivatives.

However, for a given interval *i*, it follows that:

$$\forall x \in i. \ominus x \in \hat{\ominus}i$$

COMP4075: Lecture 14 - p.26/28

Testing Interval Arithmetic (4)

For binary operators:

• For given intervals i_1 and i_2 :

$$\forall x \in i_1, y \in i_2. \ x \otimes y \in i_1 \hat{\otimes} i_2$$

For given x and y:

$$[x,x] \hat{\otimes} [y,y] = [x \otimes y, \ x \otimes y]$$

Let us turn the above into QuickCheck test cases interactively. (2021: Exercise!)