
COMP4075: Lecture 14
Property-based Testing

Henrik Nilsson

University of Nottingham, UK

COMP4075: Lecture 14 – p.1/28

QuickCheck: What is it? (1)

• Framework for property-based testing

• Flexible language for stating properties

• Random test cases generated automatically
based on type of argument(s) to properties.

• Highly configurable:

- Number, size of test cases can easily be
specified

- Additional types for more fine-grained
control of test case generation

- Customised test case generators

COMP4075: Lecture 14 – p.2/28

QuickCheck: What is it? (2)

• Support for checking test coverage

• Counterexample produced when test case fails

• Counterexamples automatically shrunk in
attempt to find minimal counterexample

COMP4075: Lecture 14 – p.3/28

Basic Example

import Test .QuickCheck

prop_RevRev :: [Int] → Bool

prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Int] → [Int] → Bool

prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

quickCheck (prop_RevRev .&&. prop_RevApp)

COMP4075: Lecture 14 – p.4/28

Basic Example

import Test .QuickCheck

prop_RevRev :: [Int] → Bool

prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Int] → [Int] → Bool

prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

quickCheck (prop_RevRev .&&. prop_RevApp)

Result: +++ OK, passed 100 tests

COMP4075: Lecture 14 – p.4/28

Class Testable

Type of quickCheck:

quickCheck :: Testable prop ⇒ prop → IO ()

COMP4075: Lecture 14 – p.5/28

Class Testable

Type of quickCheck:

quickCheck :: Testable prop ⇒ prop → IO ()

Testable and some instances:

class Testable prop where

property :: prop → Property

exhaustive :: prop → Bool

instance Testable Bool

instance Testable Property

instance (Arbitrary a,Show a,Testable prop) ⇒

Testable (a → prop)
COMP4075: Lecture 14 – p.5/28

Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.

COMP4075: Lecture 14 – p.6/28

Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.

Gen is a Monad , Applicative, Functor (and more).

COMP4075: Lecture 14 – p.6/28

Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.

Gen is a Monad , Applicative, Functor (and more).

Example:

generate (arbitrary ::Gen [Int])
Result: [28,-2,-26,6,8,8,1]

COMP4075: Lecture 14 – p.6/28

Generators (1)

Generators can further be constructed directly for
any type in the class Random:

chooseAny :: Random a ⇒ Gen a

choose :: Random a ⇒ (a, a) → Gen a

The latter can be used to state properties that
only hold over a specific range.

COMP4075: Lecture 14 – p.7/28

Generators (2)

Int and any enumeration type are in the class
Random. The following are efficient
specializations of choose:

chooseEnum :: Enum a ⇒ (a, a) → Gen a

chooseInt :: (Int , Int) → Gen Int

COMP4075: Lecture 14 – p.8/28

Generators (2)

Int and any enumeration type are in the class
Random. The following are efficient
specializations of choose:

chooseEnum :: Enum a ⇒ (a, a) → Gen a

chooseInt :: (Int , Int) → Gen Int

Generators can also be constrained by a
predicate:

suchThat ::Gen a → (a → Bool) → Gen a

COMP4075: Lecture 14 – p.8/28

Stating Properties (1)

Implication is used to state that a property
should hold whenever a precondition is satisfied:

(==>) :: Testable prop ⇒ Bool → prop → Property infixr

COMP4075: Lecture 14 – p.9/28

Stating Properties (1)

Implication is used to state that a property
should hold whenever a precondition is satisfied:

(==>) :: Testable prop ⇒ Bool → prop → Property infixr

For example, the following is a property relating a
real (represented by Double) number to its
square:

prop_SquareLarger :: Double → Bool

prop_SquareLarger x = x ↑ 2> x

COMP4075: Lecture 14 – p.9/28

Stating Properties (2)

It is not universally true, of course:

quickCheck prop_SquareLarger

Result: *** Failed! Falsifiable (after

1 test): 0.0

COMP4075: Lecture 14 – p.10/28

Stating Properties (2)

It is not universally true, of course:

quickCheck prop_SquareLarger

Result: *** Failed! Falsifiable (after

1 test): 0.0

But a sufficient precondition is that the number is
strictly greater than 1. Thus:

quickCheck

(λx → (x > 1) ==> prop_SquareLarger x)

Result: +++ OK, passed 100 tests.

COMP4075: Lecture 14 – p.10/28

Stating Properties (3)

Alternatively, universal quantification allows
using a generator that only generates valid data:

forAll :: (Show a,Testable prop) ⇒

Gen a → (a → prop) → Property

COMP4075: Lecture 14 – p.11/28

Stating Properties (3)

Alternatively, universal quantification allows
using a generator that only generates valid data:

forAll :: (Show a,Testable prop) ⇒

Gen a → (a → prop) → Property
For example:

quickCheck

(forAll (chooseAny ‘suchThat ‘ (>1))

prop_SquareLarger)

Result: +++ OK, passed 100 tests.

COMP4075: Lecture 14 – p.11/28

Stating Properties (4)

A generator that generates valid test data is
typically more efficient than generating data and
discarding what does not fit. For example:

prop_Index :: Eq a ⇒ [a] → Property

prop_Index xs =

length xs > 0 ==>

forAll (choose (0, length xs − 1)) $ λi →

xs !! i ≡ head (drop i xs)

Note the use of both implication and universal
quantification in this partiulcar formulation.

COMP4075: Lecture 14 – p.12/28

Stating Properties (5)

Properties can be combined using conjunction
and disjunction:

(.&&.) :: (Testable prop1 ,Testable prop2)

⇒ prop1 → prop2 → Property

(.||.) :: (Testable prop1 ,Testable prop2)

⇒ prop1 → prop2 → Property

COMP4075: Lecture 14 – p.13/28

Modifiers (1)

A number of newtypes with Arbitrary instances.
E.g. NonEmptyList a, SortedList a,
NonNegative a

COMP4075: Lecture 14 – p.14/28

Modifiers (1)

A number of newtypes with Arbitrary instances.
E.g. NonEmptyList a, SortedList a,
NonNegative a

Typical definitions:

newtype NonEmptyList a =

NonEmpty {getNonEmpty :: [a]}

newtype NonNegative a =

NonNegative {getNonNegative :: a }

Allows to more precice formulations
COMP4075: Lecture 14 – p.14/28

Modifiers (2)

Alternative formulation of the index property with
a type that captures that it holds only for
non-empty lists (thus avoiding the precondition):

prop_Index ::

Eq a ⇒ NonEmptyList a → Property

prop_Index (NonEmpty xs) =

forAll (choose (0, length xs − 1)) $ λi →

xs !! i ≡ head (drop i xs)

COMP4075: Lecture 14 – p.15/28

Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()

COMP4075: Lecture 14 – p.16/28

Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()

Printing of all test cases:

verboseCheck :: Testable prop ⇒ prop → IO ()

COMP4075: Lecture 14 – p.16/28

Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()

Printing of all test cases:

verboseCheck :: Testable prop ⇒ prop → IO ()

Controlling e.g. number and size of test cases:

quickCheckWith ::

Testable prop ⇒ Args → prop → IO ()

quickCheckWith

(stdArgs {maxSize = 10,maxSuccess = 1000})

prop_XXX
COMP4075: Lecture 14 – p.16/28

Labelling and Coverage (1)

label attaches a label to a test case:

label :: Testable prop ⇒ String → prop → Property

Example:

prop_RevRev :: [Int] → Property

prop_RevRev xs =

label ("length is "++ show (length xs)) $

reverse (reverse xs) === xs

COMP4075: Lecture 14 – p.17/28

Labelling and Coverage (2)

Result:

+++ OK, passed 100 tests:

7% length is 7

6% length is 3

5% length is 4

4% length is 6

There are also cover and checkCover for
checking/enforcingig specific coverage
requirements.

COMP4075: Lecture 14 – p.18/28

A Cautionary Tale (1)

prop_Sqrt :: Double → Bool

prop_Sqrt x

| x < 0 = isNaN sqrtX

| x ≡ 0 ∨ x ≡ 1 = sqrtX ≡ x

| x < 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = sqrt x

main = quickCheck propSqrt

COMP4075: Lecture 14 – p.19/28

A Cautionary Tale (1)

prop_Sqrt :: Double → Bool

prop_Sqrt x

| x < 0 = isNaN sqrtX

| x ≡ 0 ∨ x ≡ 1 = sqrtX ≡ x

| x < 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests

COMP4075: Lecture 14 – p.19/28

A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt

COMP4075: Lecture 14 – p.20/28

A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests

COMP4075: Lecture 14 – p.20/28

A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests

Errr ...

COMP4075: Lecture 14 – p.20/28

A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt

COMP4075: Lecture 14 – p.21/28

A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt

Result: +++ OK, passed 1000000 tests

COMP4075: Lecture 14 – p.21/28

A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt

Result: +++ OK, passed 1000000 tests

Oops. (Very unlikely 1.0 will be picked)
COMP4075: Lecture 14 – p.21/28

A Cautionary Tale (4)

Simply test specific cases when needed:

prop_Sqrt0 :: Bool

prop_Sqrt0 = mySqrt 0 ≡ 0

prop_Sqrt1 :: Bool

prop_Sqrt1 = mySqrt 1 ≡ 1

COMP4075: Lecture 14 – p.22/28

A Cautionary Tale (5)

prop_SqrtX :: Double → Bool

prop_SqrtX x

| x < 0 = isNaN sqrtX

| x 6 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = mySqrt x

COMP4075: Lecture 14 – p.23/28

A Cautionary Tale (6)

prop_Sqrt :: Property

prop_Sqrt = counterexample

"sqrt 0 failed"

prop_Sqrt0

.&&. counterexample

"sqrt 1 failed"

prop_Sqrt1

.&&. prop_SqrtX

(counterexample adds a string to a property that
gets printed if the property fails.)

COMP4075: Lecture 14 – p.24/28

Testing Interval Arithmetic (1)

Lifting a unary operator ⊖ to an operator ⊖̂
working on intervals is defined as follows,
assuming ⊖ is defined on the entire interval:

⊖̂i = [min
∀x∈i

⊖x, max
∀x∈i

⊖x]

COMP4075: Lecture 14 – p.25/28

Testing Interval Arithmetic (1)

Lifting a unary operator ⊖ to an operator ⊖̂
working on intervals is defined as follows,
assuming ⊖ is defined on the entire interval:

⊖̂i = [min
∀x∈i

⊖x, max
∀x∈i

⊖x]

And for binary operators:

i1 ⊗̂ i2 = [min
∀x∈i1,y∈i2

x⊗ y, max
∀x∈i1,y∈i2

x⊗ y]

COMP4075: Lecture 14 – p.25/28

Testing Interval Arithmetic (2)

But how can we test that? In general, very
difficult to find the global minimum/maximum of a
function over an interval without further
information e.g. about its derivatives.

COMP4075: Lecture 14 – p.26/28

Testing Interval Arithmetic (2)

But how can we test that? In general, very
difficult to find the global minimum/maximum of a
function over an interval without further
information e.g. about its derivatives.

However, for a given interval i, it follows that:

∀x ∈ i.⊖ x ∈ ⊖̂i

COMP4075: Lecture 14 – p.26/28

Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i

COMP4075: Lecture 14 – p.27/28

Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i

We should ideally test that the result interval is
not larger than necessary. But that is hard too.

COMP4075: Lecture 14 – p.27/28

Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i

We should ideally test that the result interval is
not larger than necessary. But that is hard too.

However, the definition does imply that a 1-point
interval must be mapped to a 1-point interval:

⊖̂[x, x] = [⊖x, ⊖x]

While not perfect, does rule out trivial
implementations and it is easy to test.

COMP4075: Lecture 14 – p.27/28

Testing Interval Arithmetic (4)

For binary operators:

• For given intervals i1 and i2:

∀x ∈ i1, y ∈ i2. x⊗ y ∈ i1⊗̂i2

• For given x and y:

[x, x] ⊗̂ [y, y] = [x⊗ y, x⊗ y]

Let us turn the above into QuickCheck test cases
interactively. (2021: Exercise!)

COMP4075: Lecture 14 – p.28/28

	QuickCheck: What is it? (1)
	QuickCheck: What is it? (2)
	Basic Example
	Class ensuremath {Conid {Testable}}
	Class ensuremath {Conid {Arbitrary}}
	Generators (1)
	Generators (2)
	Stating Properties (1)
	Stating Properties (2)
	Stating Properties (3)
	Stating Properties (4)
	Stating Properties (5)
	Modifiers (1)
	Modifiers (2)
	Runnnig Tests
	Labelling and Coverage (1)
	Labelling and Coverage (2)
	A Cautionary Tale (1)
	A Cautionary Tale (2)
	A Cautionary Tale (3)
	A Cautionary Tale (4)
	A Cautionary Tale (5)
	A Cautionary Tale (6)
	Testing Interval Arithmetic (1)
	Testing Interval Arithmetic (2)
	Testing Interval Arithmetic (3)
	Testing Interval Arithmetic (4)

