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QuickCheck: What is it? (1)

• Framework for property-based testing

• Flexible language for stating properties

• Random test cases generated automatically
based on type of argument(s) to properties.

• Highly configurable:

- Number, size of test cases can easily be
specified

- Additional types for more fine-grained
control of test case generation

- Customised test case generators
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QuickCheck: What is it? (2)

• Support for checking test coverage

• Counterexample produced when test case fails

• Counterexamples automatically shrunk in
attempt to find minimal counterexample
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Basic Example

import Test .QuickCheck

prop_RevRev :: [Int ] → Bool

prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Int ] → [Int ] → Bool

prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

quickCheck (prop_RevRev .&&. prop_RevApp)
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Basic Example

import Test .QuickCheck

prop_RevRev :: [Int ] → Bool

prop_RevRev xs =

reverse (reverse xs) ≡ xs

prop_RevApp :: [Int ] → [Int ] → Bool

prop_RevApp xs ys =

reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

quickCheck (prop_RevRev .&&. prop_RevApp)

Result: +++ OK, passed 100 tests
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Class Testable

Type of quickCheck:

quickCheck :: Testable prop ⇒ prop → IO ()
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Class Testable

Type of quickCheck:

quickCheck :: Testable prop ⇒ prop → IO ()

Testable and some instances:

class Testable prop where

property :: prop → Property

exhaustive :: prop → Bool

instance Testable Bool

instance Testable Property

instance (Arbitrary a,Show a,Testable prop) ⇒

Testable (a → prop)
COMP4075: Lecture 14 – p.5/28



Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a ]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.
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Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a ]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.

Gen is a Monad , Applicative, Functor (and more).
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Class Arbitrary

class Arbitrary a where

arbitrary ::Gen a

shrink :: a → [a ]

generate ::Gen a → IO a

Arbitrary instance for all basic types provided.
Easy to define additional ones.

Gen is a Monad , Applicative, Functor (and more).

Example:

generate (arbitrary ::Gen [Int ])
Result: [28,-2,-26,6,8,8,1]
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Generators (1)

Generators can further be constructed directly for
any type in the class Random:

chooseAny :: Random a ⇒ Gen a

choose :: Random a ⇒ (a, a) → Gen a

The latter can be used to state properties that
only hold over a specific range.
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Generators (2)

Int and any enumeration type are in the class
Random. The following are efficient
specializations of choose:

chooseEnum :: Enum a ⇒ (a, a) → Gen a

chooseInt :: (Int , Int) → Gen Int
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Generators (2)

Int and any enumeration type are in the class
Random. The following are efficient
specializations of choose:

chooseEnum :: Enum a ⇒ (a, a) → Gen a

chooseInt :: (Int , Int) → Gen Int

Generators can also be constrained by a
predicate:

suchThat ::Gen a → (a → Bool) → Gen a
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Stating Properties (1)

Implication is used to state that a property
should hold whenever a precondition is satisfied:

(==>) :: Testable prop ⇒ Bool → prop → Property infixr
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Stating Properties (1)

Implication is used to state that a property
should hold whenever a precondition is satisfied:

(==>) :: Testable prop ⇒ Bool → prop → Property infixr

For example, the following is a property relating a
real (represented by Double) number to its
square:

prop_SquareLarger :: Double → Bool

prop_SquareLarger x = x ↑ 2> x
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Stating Properties (2)

It is not universally true, of course:

quickCheck prop_SquareLarger

Result: *** Failed! Falsifiable (after

1 test): 0.0
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Stating Properties (2)

It is not universally true, of course:

quickCheck prop_SquareLarger

Result: *** Failed! Falsifiable (after

1 test): 0.0

But a sufficient precondition is that the number is
strictly greater than 1. Thus:

quickCheck

(λx → (x > 1) ==> prop_SquareLarger x )

Result: +++ OK, passed 100 tests.
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Stating Properties (3)

Alternatively, universal quantification allows
using a generator that only generates valid data:

forAll :: (Show a,Testable prop) ⇒

Gen a → (a → prop) → Property
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Stating Properties (3)

Alternatively, universal quantification allows
using a generator that only generates valid data:

forAll :: (Show a,Testable prop) ⇒

Gen a → (a → prop) → Property
For example:

quickCheck

(forAll (chooseAny ‘suchThat ‘ (>1))

prop_SquareLarger)

Result: +++ OK, passed 100 tests.
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Stating Properties (4)

A generator that generates valid test data is
typically more efficient than generating data and
discarding what does not fit. For example:

prop_Index :: Eq a ⇒ [a ] → Property

prop_Index xs =

length xs > 0 ==>

forAll (choose (0, length xs − 1)) $ λi →

xs !! i ≡ head (drop i xs)

Note the use of both implication and universal
quantification in this partiulcar formulation.
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Stating Properties (5)

Properties can be combined using conjunction
and disjunction:

(.&&.) :: (Testable prop1 ,Testable prop2 )

⇒ prop1 → prop2 → Property

(.||.) :: (Testable prop1 ,Testable prop2 )

⇒ prop1 → prop2 → Property
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Modifiers (1)

A number of newtypes with Arbitrary instances.
E.g. NonEmptyList a, SortedList a,
NonNegative a
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Modifiers (1)

A number of newtypes with Arbitrary instances.
E.g. NonEmptyList a, SortedList a,
NonNegative a

Typical definitions:

newtype NonEmptyList a =

NonEmpty {getNonEmpty :: [a ]}

newtype NonNegative a =

NonNegative {getNonNegative :: a }

Allows to more precice formulations
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Modifiers (2)

Alternative formulation of the index property with
a type that captures that it holds only for
non-empty lists (thus avoiding the precondition):

prop_Index ::

Eq a ⇒ NonEmptyList a → Property

prop_Index (NonEmpty xs) =

forAll (choose (0, length xs − 1)) $ λi →

xs !! i ≡ head (drop i xs)
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Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()
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Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()

Printing of all test cases:

verboseCheck :: Testable prop ⇒ prop → IO ()
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Runnnig Tests

Basic function to run tests:

quickCheck :: Testable prop ⇒ prop → IO ()

Printing of all test cases:

verboseCheck :: Testable prop ⇒ prop → IO ()

Controlling e.g. number and size of test cases:

quickCheckWith ::

Testable prop ⇒ Args → prop → IO ()

quickCheckWith

(stdArgs {maxSize = 10,maxSuccess = 1000})

prop_XXX
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Labelling and Coverage (1)

label attaches a label to a test case:

label :: Testable prop ⇒ String → prop → Property

Example:

prop_RevRev :: [Int ] → Property

prop_RevRev xs =

label ("length is "++ show (length xs)) $

reverse (reverse xs) === xs
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Labelling and Coverage (2)

Result:

+++ OK, passed 100 tests:

7% length is 7

6% length is 3

5% length is 4

4% length is 6

There are also cover and checkCover for
checking/enforcingig specific coverage
requirements.

COMP4075: Lecture 14 – p.18/28



A Cautionary Tale (1)

prop_Sqrt :: Double → Bool

prop_Sqrt x

| x < 0 = isNaN sqrtX

| x ≡ 0 ∨ x ≡ 1 = sqrtX ≡ x

| x < 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = sqrt x

main = quickCheck propSqrt
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A Cautionary Tale (1)

prop_Sqrt :: Double → Bool

prop_Sqrt x

| x < 0 = isNaN sqrtX

| x ≡ 0 ∨ x ≡ 1 = sqrtX ≡ x

| x < 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests
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A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt
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A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests
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A Cautionary Tale (2)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

flawedSqrt x | x ≡ 1 = 0

| otherwise = sqrt x

main = quickCheck propSqrt

Result: +++ OK, passed 100 tests

Errr ...
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A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt
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A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt

Result: +++ OK, passed 1000000 tests
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A Cautionary Tale (3)

prop_Sqrt :: Double → Bool

prop_Sqrt x

. . .

where

sqrtX = flawedSqrt x

. . .

main = quickCheckWith

(stdArgs {maxSuccess = 1000000})

propSqrt

Result: +++ OK, passed 1000000 tests

Oops. (Very unlikely 1.0 will be picked)
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A Cautionary Tale (4)

Simply test specific cases when needed:

prop_Sqrt0 :: Bool

prop_Sqrt0 = mySqrt 0 ≡ 0

prop_Sqrt1 :: Bool

prop_Sqrt1 = mySqrt 1 ≡ 1
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A Cautionary Tale (5)

prop_SqrtX :: Double → Bool

prop_SqrtX x

| x < 0 = isNaN sqrtX

| x 6 1 = sqrtX > x

| x > 1 = sqrtX > 0 ∧ sqrtX < x

where

sqrtX = mySqrt x
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A Cautionary Tale (6)

prop_Sqrt :: Property

prop_Sqrt = counterexample

"sqrt 0 failed"

prop_Sqrt0

.&&. counterexample

"sqrt 1 failed"

prop_Sqrt1

.&&. prop_SqrtX

(counterexample adds a string to a property that
gets printed if the property fails.)
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Testing Interval Arithmetic (1)

Lifting a unary operator ⊖ to an operator ⊖̂
working on intervals is defined as follows,
assuming ⊖ is defined on the entire interval:

⊖̂i = [min
∀x∈i

⊖x, max
∀x∈i

⊖x]
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Testing Interval Arithmetic (1)

Lifting a unary operator ⊖ to an operator ⊖̂
working on intervals is defined as follows,
assuming ⊖ is defined on the entire interval:

⊖̂i = [min
∀x∈i

⊖x, max
∀x∈i

⊖x]

And for binary operators:

i1 ⊗̂ i2 = [ min
∀x∈i1,y∈i2

x⊗ y, max
∀x∈i1,y∈i2

x⊗ y]
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Testing Interval Arithmetic (2)

But how can we test that? In general, very
difficult to find the global minimum/maximum of a
function over an interval without further
information e.g. about its derivatives.
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Testing Interval Arithmetic (2)

But how can we test that? In general, very
difficult to find the global minimum/maximum of a
function over an interval without further
information e.g. about its derivatives.

However, for a given interval i, it follows that:

∀x ∈ i.⊖ x ∈ ⊖̂i
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Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i
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Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i

We should ideally test that the result interval is
not larger than necessary. But that is hard too.
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Testing Interval Arithmetic (3)

Unfortunately, ⊖̂i = [−∞, +∞] satisfies

∀x ∈ i.⊖ x ∈ ⊖̂i

We should ideally test that the result interval is
not larger than necessary. But that is hard too.

However, the definition does imply that a 1-point
interval must be mapped to a 1-point interval:

⊖̂[x, x] = [⊖x, ⊖x]

While not perfect, does rule out trivial
implementations and it is easy to test.
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Testing Interval Arithmetic (4)

For binary operators:

• For given intervals i1 and i2:

∀x ∈ i1, y ∈ i2. x⊗ y ∈ i1⊗̂i2

• For given x and y:

[x, x] ⊗̂ [y, y] = [x⊗ y, x⊗ y]

Let us turn the above into QuickCheck test cases
interactively. (2021: Exercise!)
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