
G52MAL
Machines and Their Languages

Lecture 8
Equivalence of Regular Expression and Finite

Automata
Henrik Nilsson

University of Nottingham

G52MALMachines and Their LanguagesLecture 8 – p.1/36

This Lecture (1)

G52MALMachines and Their LanguagesLecture 8 – p.2/36

This Lecture (1)
• We have seen three ways of formally
describing potentially infinite languages:
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)
- Regular Expressions (RE)

G52MALMachines and Their LanguagesLecture 8 – p.2/36

This Lecture (1)
• We have seen three ways of formally
describing potentially infinite languages:
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)
- Regular Expressions (RE)

• Because
- a DFA is a special case of an NFA
- any NFA can be converted into an
equivalent DFA

DFAs and NFAs describe the same class of
languages: the Regular languages.

G52MALMachines and Their LanguagesLecture 8 – p.2/36

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

G52MALMachines and Their LanguagesLecture 8 – p.3/36

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
• Regular Expressions describe the Regular
Languages

G52MALMachines and Their LanguagesLecture 8 – p.3/36

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
• Regular Expressions describe the Regular
Languages

• Proof: interconversion between RE and FA

G52MALMachines and Their LanguagesLecture 8 – p.3/36

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
• Regular Expressions describe the Regular
Languages

• Proof: interconversion between RE and FA
• This lecture: conversion of RE to NFA

G52MALMachines and Their LanguagesLecture 8 – p.3/36

This Lecture (2)

So, what class of languages do the REs describe?
Smaller? Larger? Completely different?

In fact:
• Regular Expressions describe the Regular
Languages

• Proof: interconversion between RE and FA
• This lecture: conversion of RE to NFA

Will start by a motivating example; time permitting
will look at another application: scanners.

G52MALMachines and Their LanguagesLecture 8 – p.3/36

Applications (1)

RE to NFA conversion has important practical
applications.
The following is a very nice, practically oriented
article you should be able to fully appreciate
based on what you have learned in G52MAL
thus far:

Russ Cox. Regular Expression Matching
Can Be Simple And Fast (but is slow in
Java, Perl, PHP, Python, Ruby, ...),
January 2007.
http://swtch.com/~rsc/regexp/regexp1.html

G52MALMachines and Their LanguagesLecture 8 – p.4/36

Applications (2)

Underlying message: if you’re ignorant about CS
theory, your code can perform really poorly.
Example from the paper:

Time to match (a + ε)nan against an

Note difference of time scale: 60 s vs. 60µs!
G52MALMachines and Their LanguagesLecture 8 – p.5/36

Applications (3)

To quantify:
• Thompson NFA implementation a million
times faster than Perl when running on a
29-character string.

• Thompson NFA handles a 100-character
string in under 200 microseconds; Perl would
require over 1015 years.

G52MALMachines and Their LanguagesLecture 8 – p.6/36

Recap: Syntax of Regular Expressions
1. ∅ is an RE
2. ε is an RE
3. For all x ∈ Σ, x is an RE
(Handwriting convention: x is an RE)

4. If E and F are REs, so is E + F

5. If E and F are REs, so is EF

6. If E is an REs, so is E∗

7. If E is an REs, so is (E)

These are all regular expressions.
G52MALMachines and Their LanguagesLecture 8 – p.7/36

Recap: Semantics of Regular Expr.
1. L(∅) = ∅

2. L(ε) = {ε}

3. For all x ∈ Σ, L(x) = {x}

4. L(E + F) = L(E) ∪ L(F)

5. L(EF) = L(E)L(F)

6. L(E∗) = L(E)∗

7. L((E)) = L(E)

G52MALMachines and Their LanguagesLecture 8 – p.8/36

Converting RE to NFA (1)

We are going to detail a “Graphical Construction”
for converting an RE to an NFA that is suitable for
carrying out by hand.
It can be further refined into a fully formal
algorithm: see the lecture notes for details.

G52MALMachines and Their LanguagesLecture 8 – p.9/36

Converting RE to NFA (2)
Specification:
Let N(E) denote the NFA that results by applying
the graphical construction to an RE E. Then the
following equation must hold:

L(E) = L(N(E))

(Note that L is overloaded: the language of an
RE to the left, the language of an NFA to the right.)
We proceed case by case according to the
structure of the syntax of REs.

G52MALMachines and Their LanguagesLecture 8 – p.10/36

RE to NFA, Case ∅
Recall: L(∅) = ∅

N(∅):

Note: L(N(∅)) = ∅ = L(∅); specification satisfied
in this case.
Note: States are given without names for
simplicity. Suffice as construction is graphical;
states to be named at the end.

G52MALMachines and Their LanguagesLecture 8 – p.11/36

RE to NFA, Case ε

Recall: L(ε) = {ε}

N(ε):

Note: L(N(ε)) = {ε} = L(ε); specification
satisfied in this case.

G52MALMachines and Their LanguagesLecture 8 – p.12/36

RE to NFA, Case x for x ∈ Σ

Recall: For each x ∈ Σ, L(x) = {x}

N(x):

x

Note: L(N(x)) = {x} = L(x); specification
satisfied in this case.

G52MALMachines and Their LanguagesLecture 8 – p.13/36

RE to NFA, Case E + F (1)

Recall: L(E + F) = L(E) ∪ L(F)

N(E + F):

N F)(

N E)(
The NFAs N(E) and N(F)
in parallel. The initial
states of N(E + F) are the
union of the initial states of
N(E) and N(F).

G52MALMachines and Their LanguagesLecture 8 – p.14/36

RE to NFA, Case E + F (2)

Note: Assuming specification holds for E and F ,

L(N(E + F)) = L(N(E)) ∪ L(N(F))

= L(E) ∪ L(F)

= L(E + F)

Thus, specification holds in this case.
(This is an inductive case.)

G52MALMachines and Their LanguagesLecture 8 – p.15/36

RE to NFA, Case EF (1)
Sub-case 1: No initial state of N(E) is accepting;
i.e. ε /∈ L(N(E)) (Recall: L(EF) = L(E)L(F))

N E)(a

b

c

N F)(

G52MALMachines and Their LanguagesLecture 8 – p.16/36

RE to NFA, Case EF (2)

N F)(N E)(a

b

c

a

a

b

b

c

c

N E)(F

G52MALMachines and Their LanguagesLecture 8 – p.17/36

RE to NFA, Case EF (3)
Sub-case 2: Some initial states of N(E) are
accepting; i.e. ε ∈ L(N(E))

N F)(N E)(a

b

c

G52MALMachines and Their LanguagesLecture 8 – p.18/36

RE to NFA, Case EF (4)

N F)(N E)(a

b

c

a

a

b

b

c

c

N E)(F

G52MALMachines and Their LanguagesLecture 8 – p.19/36

RE to NFA, Case EF (5)

Note: Assuming specification holds for E and F ,

L(N(EF)) = L(N(E))L(N(F))

= L(E)L(F)

= L(EF)

Thus, specification holds in this case.
(This is an inductive case.)

G52MALMachines and Their LanguagesLecture 8 – p.20/36

RE to NFA, Case E∗ (1)

(Recall: L(E∗) = L(E)∗)

N E)(a

b

c

*

G52MALMachines and Their LanguagesLecture 8 – p.21/36

RE to NFA, Case E∗ (2)

N E)(a

b

c

*N E)(

b

c

a
c

a
b

Note the addi-
tional initial and
accepting state
that ensures the
empty word is
accepted.

G52MALMachines and Their LanguagesLecture 8 – p.22/36

RE to NFA, Case E∗ (3)

Note: Assuming specification holds for E,

L(N(E∗)) = L(N(E))∗

= L(E)∗

= L(E∗)

Thus, specification holds in this case.
(This is an inductive case.)

G52MALMachines and Their LanguagesLecture 8 – p.23/36

RE to NFA, Case (E)

(Recall: L((E)) = L(E))
N((E)) = N(E)

Note: Assuming specification holds for E,

L(N((E))) = L(N(E))

= L(E)

= L((E))

Thus, specification holds in this case.
(This is an inductive case.)

G52MALMachines and Their LanguagesLecture 8 – p.24/36

Example

Systematically construct an NFA for the regular
expression:

(a + b)∗c

(“zero or more as or bs, followed by a single c”)
Use the “graphical construction”. On the white
board.

G52MALMachines and Their LanguagesLecture 8 – p.25/36

Scanning (1)

• The first stage of many real-world language
processing tasks, such as a compiler, is to
group individual characters into language-
specific symbols called Lexemes or Tokens:
- Keywords (like if, then, while)
- Literals (like 42, 3.14, ’A’, "abc")
- Special symbols and separators (like :=, (, ;)
- . . .

G52MALMachines and Their LanguagesLecture 8 – p.26/36

Scanning (1)

• The first stage of many real-world language
processing tasks, such as a compiler, is to
group individual characters into language-
specific symbols called Lexemes or Tokens:
- Keywords (like if, then, while)
- Literals (like 42, 3.14, ’A’, "abc")
- Special symbols and separators (like :=, (, ;)
- . . .

• This process is called Lexical Analysis or
Scanning, and is performed by a Scanner.

G52MALMachines and Their LanguagesLecture 8 – p.26/36

Scanning (2)
• Commonly, white space and comments are
understood as token separators.

G52MALMachines and Their LanguagesLecture 8 – p.27/36

Scanning (2)
• Commonly, white space and comments are
understood as token separators.

• An additional task of the scanner is often to
discard white space and comments as they
usually serve no purpose after the scanning.

G52MALMachines and Their LanguagesLecture 8 – p.27/36

Scanning (2)
• Commonly, white space and comments are
understood as token separators.

• An additional task of the scanner is often to
discard white space and comments as they
usually serve no purpose after the scanning.

• Regular expressions is the most commonly
used formalism for describing the Lexical
Syntax of a language; i.e. the syntax of the
tokes, white space, and comments.

G52MALMachines and Their LanguagesLecture 8 – p.27/36

Scanning (2)
• Commonly, white space and comments are
understood as token separators.

• An additional task of the scanner is often to
discard white space and comments as they
usually serve no purpose after the scanning.

• Regular expressions is the most commonly
used formalism for describing the Lexical
Syntax of a language; i.e. the syntax of the
tokes, white space, and comments.

• In essence, a scanner is thus a finite
automaton.

G52MALMachines and Their LanguagesLecture 8 – p.27/36

Scanning (3)
• There are many famous so called scanner
generators; e.g. Lex, Flex: given regular
expressions describing the lexical syntax,
they produce a scanner for the language.

G52MALMachines and Their LanguagesLecture 8 – p.28/36

Scanning (3)
• There are many famous so called scanner
generators; e.g. Lex, Flex: given regular
expressions describing the lexical syntax,
they produce a scanner for the language.

• In the following, we will study a hand-written
scanner in Haskell for a simple language
called TXL (for “Trivial eXpression Language”)
to give a concrete example and practical
experience of these ideas.

G52MALMachines and Their LanguagesLecture 8 – p.28/36

Scanning (3)
• There are many famous so called scanner
generators; e.g. Lex, Flex: given regular
expressions describing the lexical syntax,
they produce a scanner for the language.

• In the following, we will study a hand-written
scanner in Haskell for a simple language
called TXL (for “Trivial eXpression Language”)
to give a concrete example and practical
experience of these ideas.

• When studying the code, try to understand
how the code actually implements a DFA.

G52MALMachines and Their LanguagesLecture 8 – p.28/36

Lexical Syntax TXL (1)
’a’ etc. R.E. for ind. char.; Space etc. are “macros”.

Space = ’ ’+ ’\n’
Graphic = ’+’+ ’-’+ ’*’+ ’/’

+’(’+ ’)’+ ’=’
Digit = ’0’+ . . . + ’9’
Alpha = ’a’+ . . . + ’z’

AlphaNum = Alpha + Digit

LitInt = Digit Digit∗

Id = Alpha (Alpha + Digit)∗

Keyword = ’l’ ’e’ ’t’ + ’i’ ’n’
G52MALMachines and Their LanguagesLecture 8 – p.29/36

Lexical Syntax TXL (2)

Finally, a regular expression for the entire
language:

txl = (Graphic + LitInt + Id + Keyword + Space)∗

G52MALMachines and Their LanguagesLecture 8 – p.30/36

Ambiguity Issues (1)
The given regular expression accurately describes
the lexical syntax of TXL, and is thus fine for
checking if a string (word) belongs to TXL or not.
However, for the purpose of breaking a string
into tokens, it is not quite precise enough as
there are ambiguities:

• Id and Keyword overlaps: is let an identifier
or a keyword?

• Choice between long token or short
tokens: is abc123 an identifier, an identifier
abc and an integer literal 123, or maybe even
three identifiers followed by three literals?

G52MALMachines and Their LanguagesLecture 8 – p.31/36

Ambiguity Issues (2)
Such issues are commonly resolved by adopting
certain conventions:

• Keywords takes precedence over
identifiers; i.e., a token is an identifier only if it
is not a keyword.
(Thus, let is a keyword, not an identifier.)

• “Maximal Munch Rule”: tokens should be
as long as possible; i.e., prefer grouping as a
single long token over a sequence of shorter
ones.
(Thus, abc123 is a single token, an identifier.)

G52MALMachines and Their LanguagesLecture 8 – p.32/36

TXL Scanner (1)
type Id = String
data Token = T_Int Int

| T_Id Id
| T_Plus
| T_Minus
| T_Times
| T_Divide
| T_LeftPar
| T_RightPar
| T_Equal
| T_Let
| T_In

G52MALMachines and Their LanguagesLecture 8 – p.33/36

TXL Scanner (2)

lexer :: [Char] -> [Token]

-- End of input
lexer [] = []

-- Drop white space and new lines
lexer (’ ’ : cs) = lexer cs
lexer (’\n’ : cs) = lexer cs

G52MALMachines and Their LanguagesLecture 8 – p.34/36

TXL Scanner (3)

-- Lex simple tokens
lexer (’+’ : cs) = T_Plus : lexer cs
lexer (’-’ : cs) = T_Minus : lexer cs
lexer (’*’ : cs) = T_Times : lexer cs
lexer (’/’ : cs) = T_Divide : lexer cs
lexer (’(’ : cs) = T_LeftPar : lexer cs
lexer (’)’ : cs) = T_RightPar : lexer cs
lexer (’=’ : cs) = T_Equal : lexer cs

G52MALMachines and Their LanguagesLecture 8 – p.35/36

TXL Scanner (4)
-- Lex literal integers, identifiers, and keywords

lexer (c : cs)
| isDigit c = T_Int (read (c:takeWhile isDigit cs))

: lexer (dropWhile isDigit cs)
| isAlpha c = mkIdOrKwd (c:takeWhile isAlphaNum cs)

: lexer (dropWhile isAlphaNum cs)

| otherwise = error ("Unrecognised Character")
where

mkIdOrKwd :: String -> Token
mkIdOrKwd "let" = T_Let

mkIdOrKwd "in" = T_In
mkIdOrKwd cs = T_Id cs

G52MALMachines and Their LanguagesLecture 8 – p.36/36

	This Lecture (1)
	This Lecture (2)
	Applications (1)
	Applications (2)
	Applications (3)
	Recap: Syntax of Regular Expressions
	Recap: Semantics of Regular Expr.
	Converting RE to NFA (1)
	Converting RE to NFA (2)
	RE to NFA, Case $emptyset $
	RE to NFA, Case $epsilon $
	RE to NFA, Case $esymb {x}$ for $x in Sigma $
	RE to NFA, Case $E + F$ (1)
	RE to NFA, Case $E + F$ (2)
	RE to NFA, Case EF (1)
	RE to NFA, Case EF (2)
	RE to NFA, Case EF (3)
	RE to NFA, Case EF (4)
	RE to NFA, Case EF (5)
	RE to NFA, Case E^* (1)
	RE to NFA, Case E^* (2)
	RE to NFA, Case E^* (3)
	RE to NFA, Case (E)
	Example
	Scanning (1)
	Scanning (2)
	Scanning (3)
	Lexical Syntax TXL (1)
	Lexical Syntax TXL (2)
	Ambiguity Issues (1)
	Ambiguity Issues (2)
	TXL Scanner (1)
	TXL Scanner (2)
	TXL Scanner (3)
	TXL Scanner (4)

