Terminology

G52MAL Machines and their Languages Lecture 2: Alphabets, Words and Languages

Thorsten Altenkirch based on slides by Neil Sculthorpe

Room A10 School of Computer Science University of Nottingham United Kingdom txa@cs.nott.ac.uk

1st February 2012

- The terms alphabet, word and language are used in a strict technical sense in this course.
- An alphabet is a finite set of symbols.
- A word is a finite sequence of symbols.
- A language is a set of words.
- Languages can be finite or infinite.
- The term string is often used interchangeably with the term word.

- What is a symbol, then?
- Anything, but it has to come from an alphabet.
- Usually, Σ is used to denote an alphabet.
- Example alphabets:

$$\begin{split} \Sigma_{1} &= \{0,1\}\\ \Sigma_{2} &= \{a,b,c,d,e,f,g,h,i,j,k,l,m,\\ &n,o,p,q,r,s,t,u,v,w,x,y,z\}\\ \Sigma_{3} &= \{\circ,\Box, \triangle\}\\ \Sigma_{4} &= \{0,1,2,3,4,5,6,7,8,9,+,-,*,/\} \end{split}$$

• Important exception: ε is never used as an alphabet symbol.

The Empty Word

- ε is used to denote the empty word: the sequence of zero symbols.
- But ε itself is not a symbol!
- ε is a word, not a set.
- So don't confuse it with the empty set (denoted ∅ or { }).
- Thus, $\{\varepsilon\} \neq \{\}$.

Words over an Alphabet

- The set of all words over an alphabet Σ is denoted by Σ^* .
- Σ* can be defined inductively as follows:

•
$$\varepsilon \in \Sigma^*$$

- if $x \in \Sigma$ and $w \in \Sigma^*$ then $xw \in \Sigma^*$
- Note that $\varepsilon \in \Sigma^*$ for any alphabet Σ (including $\Sigma = \emptyset$).
- Iff $\Sigma \neq \emptyset$ then Σ^* is an infinite set (of finite words).


```
• Given \Sigma = \{0, 1\}, some elements of \Sigma^* are:
```

```
\varepsilon,
0, 1,
00, 10, 01, 11,
000, 100, 010, 110, 001, 101, 011, 111,
0000, . . .
```

- This is just applying the inductive definition.
- Important note: only write ε if it appears on its own, as it denotes an absence of symbols.

- The set of all words over Σ of length n is denoted by Σⁿ (where n ∈ N).
- For example, if $\Sigma = \{a, b\}$, then $\Sigma^2 = \{aa, ab, ba, bb\}$.
- This can be used to give an alternative (but equivalent) definition of Σ*:

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

• Remember that in computer science, $0 \in \mathbb{N}$.

• A language L over an alphabet Σ is a subset of Σ^* :

$$L \subseteq \Sigma^*$$

or

 $L \in \mathcal{P}(\Sigma^*)$

- A language may be a finite or infinite set.
- Note that while ε is always an element of Σ*, it may or may not be an element of an arbitrary language.

Given $\Sigma = \{a, b, c\}$, define some languages over Σ .

- { a, abba, baa, cab }
 { c }
- {ε, a, bbb}
- {ε}

•
$$\{a^n \mid n \in \mathbb{N}\}$$

•
$$\{a^n b^n \mid n \in \mathbb{N}, n \ge 10\}$$

•
$$\{w \mid w \in \Sigma^*, odd (length (w))\}$$

- Ø
- Σ*

 Terminology
 Words over an Alphabet
 Languages
 Concatenation
 Language Membership

 Concatenation of Words

- An important operation on words (Σ^*) is concatenation.
- Concatenation is denoted by juxtaposition (i.e. writing the words side by side without using an operator symbol).
- If $v \in \Sigma^*$ and $w \in \Sigma^*$ then $vw \in \Sigma^*$
- Concatenation can be defined by primitive recursion:

$$\varepsilon w = w$$

(xv) $w = x$ (vw)

where

$$x \in \Sigma \\ v, w \in \Sigma^*$$

 Terminology
 Words over an Alphabet
 Languages
 Concatenation
 Language Membership

 Properties of Word Concatenation

• Concatenation is associative and has unit ε :

$$u(vw) = (uv) w$$

$$\varepsilon u = u = u\varepsilon$$

where

 $u, v, w \in \Sigma^*$

• Concatenation of words is not commutative (i.e. order matters), as words are sequences.

$$vw \neq wv$$

Terminology Words over an Alphabet Languages Concatenation Language Membership
Concatenation of Languages

- Remember, languages are sets, not sequences.
- Given two languages M and N over an alphabet Σ, their concatenation (MN) is defined:

$$MN = \{uv \mid u \in M \land v \in n\}$$

• Example:

$$\Sigma = \{a, b, c\}$$

$$M = \{\varepsilon, a, aa\}$$

$$N = \{b, c\}$$

$$MN = \{uv \mid u \in \{\varepsilon, a, aa\} \land v \in \{b, c\}\}$$

$$= \{\varepsilon b, \varepsilon c, ab, ac, aab, aac\}$$

$$= \{b, c, ab, ac, aab, aac\}$$

Terminology Words over an Alphabet Languages Concatenation Language Membership

Properties of Language Concatenation (1)

• Concatenation of languages is associative:

L(MN) = (LM) N

• Concatenation of languages has zero \emptyset (the empty language):

$$L\emptyset = \emptyset = \emptyset L$$

Concatenation of languages has unit {ε} (the language containing only the empty word):

 $L\left\{\varepsilon\right\} \ = \ L \ = \ \left\{\varepsilon\right\} \ L$

 Terminology
 Words over an Alphabet
 Languages
 Concatenation
 Language Membership

 Properties of Language Concatenation (2)

• Concatenation of languages distributes through set union:

$$L(M \cup N) = LM \cup LN$$
$$(L \cup M) N = LN \cup MN$$

• But it does not distribute through set intersection:

 $L(M \cap N) \neq LM \cap LN$

• Counterexample:

$$L = \{\varepsilon, a\}, M = \{\varepsilon\}, N = \{a\}$$

$$L(M \cap N) = L\emptyset = \emptyset$$

$$LM \cap LN = \{\varepsilon, a\} \cap \{a, aa\} = \{a\}$$

Concatenating a Language with Itself

- A language can be concatenated with itself.
- Exponent notation is often used for this:

•
$$L^3 = LLL$$

•
$$L^4 = LLLL$$

• etc...

Terminology	Words over an Alphabet	Languages	Concatenation	Language Membership
Kleene Star				

- Given $L \subseteq \Sigma^*$, L^* is zero or more concatenations of L.
- Note that these are different stars (but both mean 'zero or more').

$$L^* = \{w_0 w_1 \dots w_{n-1} \mid n, i \in \mathbb{N}, \forall i < n, w_i \in L\}$$

or

$$L^* = \bigcup_{n=0}^{\infty} L^n = L^0 \cup L^1 \cup L^2 \cup \dots$$

or

$$\begin{array}{ccc} \varepsilon & \in L^* \\ w \in L & \Rightarrow w & \in L^* \\ v \in L^* \land w \in L^* \Rightarrow vw \in L^* \end{array}$$

• Fundamental question of this module:

Given a language $L\subseteq \Sigma^*$ and a word $w\in \Sigma^*$, can we determine if $w\in L$?

- If *L* is finite, this is easy.
- But not so easy if *L* is infinite, which most interesting languages are.
- We need:
 - A finite (and preferably concise) description of the (infinite) language.
 - A method to decide if $w \in L$ or not, given such a description.
- Over the course of this module we are going to encounter a number of possibilities, with varying descriptive power.

Recommended Reading

- Introduction to Automata Theory, Languages, and Computation (3rd edition), pages 28–33.
- G52MAL Lecture Notes, page 6.