G52MAL Machines and their Languages Lecture 9: Proving Languages not to be Regular

Thorsten Altenkirch based on slides by Neil Sculthorpe

Room A10 School of Computer Science University of Nottingham United Kingdom txa@cs.nott.ac.uk

13th March 2012

Regular Languages

- The Regular Languages are those that can be recognised by finite automata.
- Such machines have a finite number states (i.e. finite memory).
- But many languages are not regular.

The Chomsky Hierarchy

ursively Enumerable Languages (Type 0)	Turing Machines
ecursive/Decidable Languages	Total Turing Machines / Decider
Context-Sensitive Languages (Type 1)	Linear-Bounded Turing Machines
Context-Free Languages (Type 2)	Pushdown Automata
Regular Languages (Type 3)	Finite Automata

Proving Languages not to be Regular

- How do we prove a language is not regular?
- One technique: Using The Pumping Lemma
- Basic idea: Exploit the fact that, for any Regular Language, sufficiently long words are repetitive.

The Pumping Lemma for Regular Languages

Given a regular language L, there exists an $n \in \mathbb{N}$ such that all $w \in L$ of length at least n can be split into three words (w = xyz) satisfying:

- $y \neq \varepsilon$
- $|xy| \leq n$
- $\forall k \in \mathbb{N}$. $xy^k z \in L$

Recommended Reading

- Introduction to Automata Theory, Languages, and Computation (3rd edition), pages 127–131
- G52MAL Lecture Notes, pages 29–31