
MGS 2011: FUN Lecture 5
Concurrency

Henrik Nilsson

University of Nottingham, UK

MGS 2011: FUN Lecture 5 – p.1/36

This Lecture

• A concurrency monad (adapted from
Claessen (1999))

• Basic concurrent programming in Haskell
• Software Transactional Memory (the STM

monad)

MGS 2011: FUN Lecture 5 – p.2/36

A Concurrency Monad (1)

A Thread represents a process: a stream of
primitive atomic operations:

data Thread = Print Char Thread
| Fork Thread Thread
| End

Note that a Thread represents the entire rest of
a computation.

MGS 2011: FUN Lecture 5 – p.3/36

A Concurrency Monad (2)

Introduce a monad representing “interleavable
computations”. At this stage, this amounts to little
more than a convenient way to construct threads
by sequential composition.

How can Threads be constructed sequentially?
The only way is to parameterize thread prefixes
on the rest of the Thread. This leads directly to
continuations.

MGS 2011: FUN Lecture 5 – p.4/36

A Concurrency Monad (3)

newtype CM a = CM ((a -> Thread) -> Thread)

fromCM :: CM a -> ((a -> Thread) -> Thread)

fromCM (CM x) = x

thread :: CM a -> Thread

thread m = fromCM m (const End)

instance Monad CM where

return x = CM (\k -> k x)

m >>= f = CM $ \k ->

fromCM m (\x -> fromCM (f x) k)
MGS 2011: FUN Lecture 5 – p.5/36

A Concurrency Monad (4)

Atomic operations:

cPrint :: Char -> CM ()

cPrint c = CM (\k -> Print c (k ()))

cFork :: CM a -> CM ()

cFork m = CM (\k -> Fork (thread m) (k ()))

cEnd :: CM a

cEnd = CM (_ -> End)

MGS 2011: FUN Lecture 5 – p.6/36

Running a Concurrent Computation (1)
Running a computation:

type Output = [Char]

type ThreadQueue = [Thread]

type State = (Output, ThreadQueue)

runCM :: CM a -> Output

runCM m = runHlp ("", []) (thread m)

where

runHlp s t =

case dispatch s t of

Left (s’, t) -> runHlp s’ t

Right o -> o
MGS 2011: FUN Lecture 5 – p.7/36

Running a Concurrent Computation (2)

Dispatch on the operation of the currently
running Thread. Then call the scheduler.

dispatch :: State -> Thread

-> Either (State, Thread) Output

dispatch (o, rq) (Print c t) =

schedule (o ++ [c], rq ++ [t])

dispatch (o, rq) (Fork t1 t2) =

schedule (o, rq ++ [t1, t2])

dispatch (o, rq) End =

schedule (o, rq)

MGS 2011: FUN Lecture 5 – p.8/36

Running a Concurrent Computation (3)

Selects next Thread to run, if any.

schedule :: State -> Either (State, Thread)

Output

schedule (o, []) = Right o

schedule (o, t:ts) = Left ((o, ts), t)

MGS 2011: FUN Lecture 5 – p.9/36

Example: Concurrent Processes

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ cPrint ’2’ cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd2e3f4g5h6i7j890
Note: As it stands, the output is only made
available after all threads have terminated.)

MGS 2011: FUN Lecture 5 – p.10/36

Incremental Output
Incremental output:
runCM :: CM a -> Output

runCM m = dispatch [] (thread m)

dispatch :: ThreadQueue -> Thread -> Output

dispatch rq (Print c t) = c : schedule (rq ++ [t])

dispatch rq (Fork t1 t2) = schedule (rq ++ [t1, t2])

dispatch rq End = schedule rq

schedule :: ThreadQueue -> Output

schedule [] = []

schedule (t:ts) = dispatch ts t

MGS 2011: FUN Lecture 5 – p.11/36

Example: Concurrent processes 2

p1 :: CM () p2 :: CM () p3 :: CM ()

p1 = do p2 = do p3 = do

cPrint ’a’ cPrint ’1’ cFork p1

cPrint ’b’ undefined cPrint ’A’

... ... cFork p2

cPrint ’j’ cPrint ’0’ cPrint ’B’

main = print (runCM p3)

Result: aAbc1Bd*** Exception:
Prelude.undefined

MGS 2011: FUN Lecture 5 – p.12/36

Any Use?

• A number of libraries and embedded
langauges use similar ideas, e.g.
- Fudgets
- Yampa
- FRP in general

• Studying semantics of concurrent programs.
• Aid for testing, debugging, and reasoning

about concurrent programs.

MGS 2011: FUN Lecture 5 – p.13/36

Concurrent Programming in Haskell

Primitives for concurrent programming provided
as operations of the IO monad (or “sin bin” :-).
They are in the module Control.Concurrent.
Excerpts:

forkIO :: IO () -> IO ThreadId

killThread :: ThreadId -> IO ()

threadDelay :: Int -> IO ()

newMVar :: a -> IO (MVar a)

newEmptyMVar :: IO (MVar a)

putMVar :: MVar a -> a -> IO ()

takeMVar :: MVar a -> IO a

MGS 2011: FUN Lecture 5 – p.14/36

MVars

• The fundamental synchronisation mechanism
is the MVar (“em-var”).

• An MVar is a “one-item box” that may be
empty or full.

• Reading (takeMVar) and writing (putMVar)
are atomic operations:
- Writing to an empty MVar makes it full.
- Writing to a full MVar blocks.
- Reading from an empty MVar blocks.
- Reading from a full MVar makes it empty.

MGS 2011: FUN Lecture 5 – p.15/36

Example: Basic Synchronization (1)

module Main where

import Control.Concurrent

countFromTo :: Int -> Int -> IO ()

countFromTo m n

| m > n = return ()

| otherwise = do

putStrLn (show m)

countFromTo (m+1) n

MGS 2011: FUN Lecture 5 – p.16/36

Example: Basic Synchronization (2)

main = do

start <- newEmptyMVar

done <- newEmptyMVar

forkIO $ do

takeMVar start

countFromTo 1 10

putMVar done ()

putStrLn "Go!"

putMVar start ()

takeMVar done

(countFromTo 11 20)

putStrLn "Done!"
MGS 2011: FUN Lecture 5 – p.17/36

Example: Unbounded Buffer (1)

module Main where

import Control.Monad (when)

import Control.Concurrent

newtype Buffer a =

Buffer (MVar (Either [a] (Int, MVar a)))

newBuffer :: IO (Buffer a)

newBuffer = do

b <- newMVar (Left [])

return (Buffer b)
MGS 2011: FUN Lecture 5 – p.18/36

Example: Unbounded Buffer (2)

readBuffer :: Buffer a -> IO a
readBuffer (Buffer b) = do

bc <- takeMVar b
case bc of

Left (x : xs) -> do
putMVar b (Left xs)
return x

Left [] -> do
w <- newEmptyMVar
putMVar b (Right (1,w))
takeMVar w

Right (n,w) -> do
putMVar b (Right (n + 1, w))
takeMVar w

MGS 2011: FUN Lecture 5 – p.19/36

Example: Unbounded Buffer (3)

writeBuffer :: Buffer a -> a -> IO ()

writeBuffer (Buffer b) x = do

bc <- takeMVar b

case bc of

Left xs ->

putMVar b (Left (xs ++ [x]))

Right (n,w) -> do

putMVar w x

if n > 1 then

putMVar b (Right (n - 1, w))

else

putMVar b (Left [])
MGS 2011: FUN Lecture 5 – p.20/36

Example: Unbounded Buffer (4)

The buffer can now be used as a channel of
communication between a set of “writers” and a
set of “readers”. E.g.
main = do

b <- newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...

MGS 2011: FUN Lecture 5 – p.21/36

Example: Unbounded Buffer (5)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- readBuffer b

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop

MGS 2011: FUN Lecture 5 – p.22/36

Compositionality? (1)

Suppose we would like to read two consecutive
elements from a buffer b?

That is, sequential composition.

Would the following work?

x1 <- readBuffer b

x2 <- readBuffer b

MGS 2011: FUN Lecture 5 – p.23/36

Compositionality? (2)

What about this?

mutex <- newMVar ()

...

takeMVar mutex

x1 <- readBuffer b

x2 <- readBuffer b

putMVar mutex ()

MGS 2011: FUN Lecture 5 – p.24/36

Compositionality? (3)

Suppose we would like to read from one of two
buffers.

That is, composing alternatives.

Hmmm. How do we even begin?

• No way to attempt reading a buffer without
risking blocking.

• We have to change or enrich the buffer
implementation. E.g. add a tryReadBuffer
operation, and then repeatedly poll the two
buffers in a tight loop. Not so good!

MGS 2011: FUN Lecture 5 – p.25/36

Software Transactional Memory (1)

• Operations on shared mutable variables
grouped into transactions.

• A transaction either succeeds or fails in its
entirety. I.e., atomic w.r.t. other transactions.

• Failed transactions are automatically retried
until they succeed.

• Transaction logs, which records reading and
writing of shared variables, maintained to
enable transactions to be validated, partial
transactions to be rolled back, and to determine
when worth trying a transaction again.

MGS 2011: FUN Lecture 5 – p.26/36

Software Transactional Memory (2)

• No locks! (At the application level.)

MGS 2011: FUN Lecture 5 – p.27/36

STM and Pure Declarative Languages
• STM perfect match for purely declarative

languages:
- reading and writing of shared mutable

variables explicit and relatively rare;
- most computations are pure and need not

be logged.
• Disciplined use of effects through monads a

huge payoff: easy to ensure that only effects
that can be undone can go inside a transaction.

(Imagine the havoc arbitrary I/O actions could cause if
part of transaction: How to undo? What if retried?)

MGS 2011: FUN Lecture 5 – p.28/36

The STM monad

The software transactional memory abstraction
provided by a monad STM. Distinct from IO!
Defined in Control.Concurrent.STM.

Excerpts:

newTVar :: a -> STM (TVar a)

writeTVar :: TVar a -> a -> STM ()

readTVar :: TVar a -> STM a

retry :: STM a

atomically :: STM a -> IO a

MGS 2011: FUN Lecture 5 – p.29/36

Example: Buffer Revisited (1)

Let us rewrite the unbounded buffer using the
STM monad:
module Main where

import Control.Monad (when)
import Control.Concurrent
import Control.Concurrent.STM

newtype Buffer a = Buffer (TVar [a])

newBuffer :: STM (Buffer a)
newBuffer = do

b <- newTVar []
return (Buffer b)

MGS 2011: FUN Lecture 5 – p.30/36

Example: Buffer Revisited (2)

readBuffer :: Buffer a -> STM a
readBuffer (Buffer b) = do

xs <- readTVar b
case xs of

[] -> retry
(x : xs’) -> do

writeTVar b xs’
return x

writeBuffer :: Buffer a -> a -> STM ()
writeBuffer (Buffer b) x = do

xs <- readTVar b
writeTVar b (xs ++ [x])

MGS 2011: FUN Lecture 5 – p.31/36

Example: Buffer Revisited (3)

The main program and code for readers and
writers can remain unchanged, except that STM
operations must be carried out atomically:
main = do

b <- atomically newBuffer

forkIO (writer b)

forkIO (writer b)

forkIO (reader b)

forkIO (reader b)

...

MGS 2011: FUN Lecture 5 – p.32/36

Example: Buffer Revisited (4)

reader :: Buffer Int -> IO ()

reader n b = rLoop

where

rLoop = do

x <- atomically (readBuffer b)

when (x > 0) $ do

putStrLn (n ++ ": " ++ show x)

rLoop

MGS 2011: FUN Lecture 5 – p.33/36

Composition (1)

STM operations can be robustly composed.
That’s the reason for making readBuffer and
writeBuffer STM operations, and leaving it to
client code to decide the scope of atomic blocks.

Example, sequential composition: reading two
consecutive elements from a buffer b:

atomically $ do

x1 <- readBuffer b

x2 <- readBuffer b

...

MGS 2011: FUN Lecture 5 – p.34/36

Composition (2)

Example, composing alternatives: reading from
one of two buffers b1 and b2:

x <- atomically $

readBuffer b1

‘orElse‘ readBuffer b2

The buffer operations thus composes nicely. No
need to change the implementation of any of the
operations!

MGS 2011: FUN Lecture 5 – p.35/36

Reading
• Koen Claessen. A Poor Man’s Concurrency Monad.

Journal of Functional Programming, 9(3), 1999.

• Wouter Swierstra and Thorsten Altenkirch. Beauty in
the Beast: A Functional Semantics for the Awkward
Squad. In Proceedings of Haskell’07, 2007.

• Tim Harris, Simon Marlow, Simon Peyton Jones,
Maurice Herlihy. Composable Memory Transactions. In
Proceedings of PPoPP’05, 2005

• Simon Peyton Jones. Beautiful Concurrency. Chapter
from Beautiful Code, ed. Greg Wilson, O’Reilly 2007.

MGS 2011: FUN Lecture 5 – p.36/36

	This Lecture
	A Concurrency Monad (1)
	A Concurrency Monad (2)
	A Concurrency Monad (3)
	A Concurrency Monad (4)
	Running a Concurrent Computation (1)
	Running a Concurrent Computation (2)
	Running a Concurrent Computation (3)
	Example: Concurrent Processes
	Incremental Output
	Example: Concurrent processes 2
	Any Use?
	Concurrent Programming in Haskell
		exttt {MVar}s
	Example: Basic Synchronization (1)
	Example: Basic Synchronization (2)
	Example: Unbounded Buffer (1)
	Example: Unbounded Buffer (2)
	Example: Unbounded Buffer (3)
	Example: Unbounded Buffer (4)
	Example: Unbounded Buffer (5)
	Compositionality? (1)
	Compositionality? (2)
	Compositionality? (3)
	Software Transactional Memory (1)
	Software Transactional Memory (2)
	STM and Pure Declarative Languages
	The 	exttt {STM} monad
	Example: Buffer Revisited (1)
	Example: Buffer Revisited (2)
	Example: Buffer Revisited (3)
	Example: Buffer Revisited (4)
	Composition (1)
	Composition (2)
	Reading

