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A Blessing and a Curse

The BIG advantage of pure functional
programming is

“everything Is explicit;”
l.e., flow of data manifest, no side effects.

Makes it a lot easler to understand large
programs.

The BIG problem with pure functional
programming Is
“everything Is explicit.”

Can add a lot of clutter, make it hard to
maintain code



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

Absence of effects
facilitates understanding and reasoning
makes lazy evaluation viable
allows choice of reduction order, e.g. parallel
enhances modularity and reuse.



Conundrum

“Shall | be pure or impure?” (Wadler, 1992)

Absence of effects
facilitates understanding and reasoning
makes lazy evaluation viable
allows choice of reduction order, e.g. parallel
enhances modularity and reuse.

Effects (state, exceptions, ...) can
help making code concise
facilitate maintenance
Improve the efficiency.
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Example: A Compiler Fragment (1)

Identification Is the task of relating each applied
identifier occurrence to its declaration or
definition:

public class C {

T (D=0 )
J

In the body of set , the one applied occurrence of

X refers to the instance variable x
n refers to the argument n.



Example: A Compiler Fragment (2)

Consider an AST Exp for a simple expression
language. Exp Is a parameterized type: the type
parameter a allows variables to be annotated
with an attribute of type a.

dinm@
= Litlnt | Nt
Var | d

UnOpApp UnOp (Exp a)

Bi nOpApp BinOp (Exp a) (Exp a)

| 1 (Exp a) (Exp a) (Exp a)

Let [(Id, Type, Exp a)] (Exp a)




Example: A Compiler Fragment (3)

Example: The following code fragment
let Iint X =7 1in x + 35

would be represented like this (before
identification):

Let [("x", IntType, Litlnt 7)]
( Bl nOpApp Pl us
(Var "x" ())
(LitInt 35))



Example: A Compiler Fragment (4)

Goals of the identification phase:

Annotate each applied identifier occurrence
with attributes of the corresponding variable
declaration.

l.e., map unannotatec
ated AST Exp Attr.

Report conflicting variable definitions and
und@l VEUELES

Ldentification :: \
@AD o
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Example: Before ldentification

Let [("Xx", IntType, Litlnt 7)]
( Bl nOpApp Pl us
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(Litlnt 35))



Example: A Compiler Fragment (5)

Example: Before ldentification
Let [("Xx", IntType, Litlnt 7)]

( Bl nOpApp Pl us
(Var “x* ())
(Litlnt 35))

After identification:

Let [("Xx", IntType, Litlnt 7)]
( Bl nOpApp Pl us
(Var "x" (1, IntType))
(Litlnt 35))



Example: A Compiler Fragment (6)

ent er Var inserts a variable at the given scope
level and of the given type into an environment.

Check that no variable with same name has
been defined at the same scope level.

If not, the new variable is entered, and the
resulting environment is returned.

Otherwise an.error message Is returned.

entervVar :: I|Id

-> EIt her




Example: A Compiler Fragment (7)

Functions that do the real work:

| dent Aux ::
Int -> Env -> Exp ()
-> (Exp Attr, [ErrorMsg])

| dent Defs ::
Int -> Env -> [(1d, Type, Exp ())]
-> ([(l1d, Type, Exp Attr)],
Env,
[ Error Msg])



Example: A Compiler Fragment (8)

| dentDefs | env [] = ([], env, [])
ldentDefs | env ((i,t,e) : ds) =

((1,t,e’) . ds’, env'’, nmsl++ns2++ns3)
wher e
(e’, nel) = identAux | env e
(env’', nB2) =
case enterVar 1 | t env of

Left env’ -> (env’', [])
Right m ->(env, [mM)
(ds’, env’'’, nme3) =
| dent Defs | env’ ds



Example: A Compiler Fragment (9)

Error checking and collection of error messages
arguably added a lot of clutter . The core of the
algorithm is this:

| dentDefs | env [] = (][], env)
| dentDefs | env ((1,t,e) : ds) =
((1,t,e’) : ds’, env''’)

wher e
e’ = 1dentAux | env e
env’ — enterVar 1 | t env

(ds’, env’''’) | dentDefs | env’ ds

Errors are just a side effect .
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Answer to Conundrum: Monads (1)

Monads bridges the gap: allow effectful
programming in a pure setting.

Key idea: Computational types : an object of
type M A denotes a computation of an
object of type A.

Thus we shall be both pure and impure,
whatever takes our fancy!

Monads originated in Category Theory.

Adapted by
Moggi for structuring denotational semantics

Wadler for structuring functional programs
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Answer to Conundrum: Monads (2)

Monads

promote disciplined use of effects since the
type reflects which effects can occur;

allow great flexibility in tailoring the effect
structure to precise needs,

support changes to the effect structure with
minimal impact on the overall program structure;

allow integration into a pure setting of real
effects such as
/O

mutable state.



ThisLecture

Pragmatic introduction to monads:

Effectful computations
ldentifying a common pattern
Monads as a design pattern



Example 1: A Simple Evaluator

data Exp =

eval
eval
eval
eval
eval
eval

(Lit
( Add
( Sub
( Mul
(D v

Lit | nteger

Add Exp
Sub Exp
Mul  Exp
Div EXp

1)) =
el e2) =
el e2) =
el e2) =
el e2) =

Exp
Exp
Exp
Exp

Exp -> | nteger

n
eval
eval
eval

eval

el + eval e2
el - eval e2
el » eval e2
el ‘div' eval e2
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Making the Evaluator Safe (1)

data Maybe a = Nothing | Just a

saf eEval :: Exp -> Maybe | nteger
safeEval (Lit n) = Just n
saf eEval (Add el e2) =
case safekEval el of
Not hi ng -> Not hi ng
Just nl ->
case safekval e2 of
Not hi ng -> Not hi ng
Just n2 -> Just (nl + n2)
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Making the Evaluator Safe (2)

saf eEval (Sub el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> Just (nl - n2)
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Making the Evaluator Safe (3)

saf eEval (Mul el e2)
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> Just (nl * n2)
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Making the Evaluator Safe (4)

safeEval (Div el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl ->
case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 ->
| f n2 ==
t hen Not hi ng
el se Just (nl ‘div' n2)
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Any Common Pattern?

Clearly a lot of code duplication!
Can we factor out a common pattern?

We note:

Sequencing of evaluations (or
computations ).

If one evaluation fails, fail overall.

Otherwise, make result available to following
evaluations.
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Seguencing Evaluations

eval Seq :: Maybe | nteger
-> (I nteger -> Maybe | nteger)
-> Maybe | nt eger
eval Seq ma f =
case ma of
Not hi ng -> Not hi ng
Just a ->f a
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Exercise 1. Refactoring saf eEval

Rewrite saf eEval , case Add, using eval Seq:

saf eEval (Add el e2) =
case safeEval el of
Not hi ng -> Not hi ng
Just nl -=>
case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> Just (nl + n2)
eval Seq ma f =
case nmm of
Not hi ng -> Not hi ng
Just a -> f a
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Exercise 1: Solution

saf eEval :: Exp -> Maybe | nt eger
saf eEval (Add el e2) =
eval Seq (safeEval el)
(\nl -> eval Seq (saf ekEval e2)
(\n2 -> Just (nl+n2)
or

safeEval :: Exp -> Maybe I nteger
saf eEval (Add el e2) =
saf eEval el ‘eval Seq* (\nl ->
saf eEval e2 ‘eval Seq* (\n2 ->
Just (nl + n2)))
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Aside: Scope Rules of A-abstractions

The scope rules of A-abstractions are such that
parentheses can be omitted:

saf eEval :: Exp -> Maybe | nt eger

saf eEval (Add el e2) =
saf eEval el ‘eval Seq* \nl ->

saf eEval e2 ‘eval Seq* \n2 ->
Just (nl + n2)
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Refactored Safe Evaluator (1)

saf eEval :: Exp -> Maybe | nt eger

safeEval (Lit n) = Just n

saf eEval (Add el e2) =
saf eEval el ‘eval Seq'
saf eEval e2 ‘eval Seq'
Just (nl + n2)

saf eEval (Sub el e2) =
saf eEval el ‘eval Seq'
saf eEval e2 ‘eval Seq'
Just (nl - n2)

\nl ->
\n2 ->
\nl ->
\n2 ->
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Refactored Safe Evaluator (2)

saf eEval (Mul el e2)
saf eEval el ‘eval Seq* \nl ->
saf eEval e2 ‘eval Seq* \n2 ->
Just (nl * n2)

safeEval (Div el e2) =
saf eEval el ‘eval Seq* \nl ->
saf eEval e2 ‘eval Seq* \n2 ->
1 f n2 ==
t hen Not hi ng
el se Just (nl ‘div' n2)
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Inlining eval Seq (1)

saf eEval (Add el e2) =
saf eEval el ‘eval Seq* \nl ->
saf eEval e2 ‘eval Seq* \n2 ->
Just (nl + n2)
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Inlining eval Seq (1)

saf eEval (Add el e2) =
saf eEval el ‘eval Seq* \nl ->
saf eEval e2 ‘eval Seq* \n2 ->
Just (nl + n2)

saf eEval (Add el e2) =

case (safekEval el) of

Not hi ng -> Not hi ng
Just a -> (\nl -> safekEval e2 ...) a

MGS 2011: FUN Lecture 3 — p.28/52



Inlining eval Seq (2)

saf eEval (Add el e2) =

case (safekEval el) of

Not hi ng -> Not hi ng
Just nl -> safeEkEval e2 ‘eval Seq* (\n2 -> ...)
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Inlining eval Seq (2)

saf eEval (Add el e2) =

case (safekval el) of

Not hi ng -> Not hi ng
Just nl -> safeEkEval e2 ‘eval Seq* (\n2 -> ...)

saf eEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just a -> (\n2 -> ...) a
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Inlining eval Seqg (3)

saf eEval (Add el e2) =
case (safeEval el) of
Not hi ng -> Not hi ng
Just nl -> case safeEval e2 of
Not hi ng -> Not hi ng
Just n2 -> (Just nl + n2)

Good excercise: verify the other cases.
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Maybe Viewed as a Computation (1)

Consider a value of type Maybe a as
denoting a computation of a value of type a
that may fail .

When sequencing possibly failing
computations, a natural choice is to fall
overall once a subcomputation falls.

l.e. failure is an effect , implicitly affecting
subsequent computations.

Let’s generalize and adopt names reflecting
our intentions.



Maybe Viewed as a Computation (2)

Successful computation of a value:

nmoReturn :: a -> Maybe a
nmoRet urn = Just

Sequencing of possibly failing computations:

nbSeq :: Maybe a -> (a -> Maybe b) -> Maybe b
nmSeq ma f =
case ma of
Not hi ng -> Not hi ng
Just a ->f a
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Maybe Viewed asa Computation (3)

Failing computation:

mbFai|l :: Maybe a
moFai | = Not hi ng



The Safe Evaluator Revisited

saf eEval :: Exp -> Maybe | nteger
safeEval (Lit n) = nbReturn n
saf eEval (Add el e2) =
saf eEval el ‘nbSeq’ \nl ->
saf eEval e2 ‘nbSeq’ \n2 ->
mMReturn (nl + n2)

safeEval (Div el e2) =
saf eEval el ‘nbSeq’ \nl ->
saf eEval e2 ‘nbSeq’ \n2 ->
If n2 == 0 then nbFail
el se nbReturn (nl1 ‘div® n2)))
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Example 2: Numbering Trees

data Tree a = Leaf a | Node (Tree a) (Tree a)

nunberTree .. Tree a -> Tree Int
nunber Tree t = fst (ntAux t O0)
wher e
NntAux :: Tree a ->1Int -> (Tree Int,|nt)
nt Aux (Leaf ) n = (Leaf n, n+l)
nt Aux (Node t1 t2) n =
let (t1’, nN') = ntAux tl n

In let (t2°, nN'’) = ntAux t2 n’
In (Node t1' t2', n' )

MGS 2011: FUN Lecture 3 — p.35/52



Observations

Repetitive pattern: threading a counter
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Observations

Repetitive pattern: threading a counter
through a sequence of tree numbering
computations .

It is very easy to pass on the wrong version of
the counter!

Can we do better?
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Stateful Computations (1)

A stateful computation consumes a state
and returns a result along with a possibly
updated state.

The following type synonym captures this
Idea:

type Sa=1Int -> (a, Int)
(Only | nt state for the sake of simplicity.)

A value (function) of type S a can now be
viewed as denoting a stateful computation
computing a value of type a.
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Stateful Computations (2)

When sequencing stateful computations, the
resulting state should be passed on to the
next computation.

|.e. state updating is an effect , implicitly
affecting subsequent computations.
(As we would expect.)
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Stateful Computations (3)

Computation of a value without changing the
state (Forref. S a = Int -> (a, Int)):

SReturn :: a -> S a
SReturn a = \n -> (a, n)

Sequencing of stateful computations:
sSeq :: Sa->(a->Sb) ->Sb
sSeq saf =\n ->

let (a, n') = san
Inf an



Stateful Computations (4)

Reading and incrementing the state
(Forref.. S a = Int -> (a, Int)):

slnc :: S Int
slnc =\n -> (n, n + 1)



Numbering treesrevisited

data Tree a = Leaf a | Node (Tree a) (Tree a)

nunber Tree :: Tree a -> Tree Int
nunber Tree t = fst (ntAux t O0)
wher e
ntAux :: Tree a -> S (Tree |Int)

nt Aux (Leaf ) =
slnc “sSeq’ \n -> sReturn (Leaf n)
nt Aux (Node t1 t2) =
ntAux t1 ‘sSeq’ \tl ->
nt Aux t2 ‘sSeq’ \t2' ->
SReturn (Node t1' t2")
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Observations

The “plumbing” has been captured by the
abstractions.



Observations

The “plumbing” has been captured by the
abstractions.
In particular:

counter no longer manipulated directly

no longer any risk of “passing on” the
wrong version of the counter!
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Comparison of the examples

Both examples characterized by sequencing
of effectful computations.

Both examples could be neatly structured by
Introducing:
A type denoting computations

A function constructing an effect-free
computation of a value

A function constructing a computation by
seguencing computations

In fact, both examples are instances of the
general notion of a MONAD.



Monadsin Functional Programming

A monad is represented by:
A type constructor
M:: *x -> %
M T represents computations of a value of type T.
A polymorphic function
return :: a -> Ma
for lifting a value to a computation.
A polymorphic function
(>>=) :: Ma ->(a ->Mb) ->Mb
for sequencing computations.



Exercise2: j ol nand f nap

Equivalently, the notion of a monad can be
captured through the following functions:

return :: a -> Ma

join :: (M(Ma)) -> Ma

frap :: (a ->b) ->(Ma -> MDb)
] ol n “flattens” a computation, f map “lifts” a
function to map computations to computations.

Define j ol n and f map In terms of >>= (and
ret urn), and >>=interms of | oi n and f nap.

(>>=) :: Ma->(a->Mb) ->MD



Exercise 2: Solution

join :: M(Ma) -> Ma
join mMm = nmm >>= | d

frmap :: (a->b) ->Ma ->MDb
frmmp f m= m>>=\a -> return (f a)
or.

frmap :: (a->b) ->Ma -> MDb
frmap f m= m>>=return . f

(>>=) :: Ma ->(a->MDb) ->MDb
m>=f =join (frmap f m
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Monad laws

Additionally, the following laws must be satisfied:

returnxz>>=f = fux
m>>=return = m
(m>>= f)>>=qg = m>>= Az — f x>>=g)

l.e., r et ur n is the right and left identity for >>=,
and >>=|s associative.



Exercise 3: Theldentity Monad

The ldentity Monad can be understood as
representing effect-free  computations:

type | a = a
1. Provide suitable definitions of r et ur n and
>>=

2. Verify that the monad laws hold for your
definitions.



Exercise 3: Solution

return :: a ->1 a
return = 1d
(>>=) :: Il a->(a->1Db) ->1 Db

m>=f =f m
- or: (>>=) =flip (9

Simple calculations verify the laws, e.g.:

returna>>=f = 1dx>=f
£E>>:f

— fu



Monadsin Category Theory (1)

The notion of a monad originated in Category
Theory. There are several equivalent definitions
(Benton, Hughes, Moggi 2000):

Kleisli triple/triple in extension form: Most
closely related to the >>= version:

A Klesili triple over a category C Is a
triple (T,n, _*), where T : |C| — |C
na:A—TAfor AelC
for f: A —TB.

(Additionally, some laws must be satisfied.)

, " TA—1TB




Monadsin Category Theory (2)

Monad/triple in monoid form:  More akin to
the | oi n/f map version:

A monad over a category C Is a triple
(T,n, ), where T : C — C is a functor,
n:ide—T and p : T*T are natural
transformations.

(Additionally, some commuting diagrams
must be satisfied.)



Reading

Philip Wadler. The Essence of Functional
Programming. Proceedings of the 19th ACM
Symposium on Principles of Programming Languages
(POPL92), 1992.

Nick Benton, John Hughes, Eugenio Moggi. Monads
and Effects. In International Summer School on
Applied Semantics 2000, Caminha, Portugal, 2000.

All About Monads.
http://ww. haskel | . org/all _about nonads
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